Referring to the natural succession to restore polluted land is one of the most vital assignments to solving the environmental problems. However, there is little understanding of the natural restoration of nutrient biogeochemical cycles in abandoned land with severe metal pollution. To clarify the nutrient cycling process and the influence of organisms on it, we investigated the magnitude of rhizosphere effects on soil nitrogen (N), phosphorus (P) and sulphur (S) cycles in natural restoration of an abandoned metal mine, as well as the roles of plants and microorganisms in the nutrient cycles.
View Article and Find Full Text PDFFacing the rapid spread of antimicrobial resistance, methods based on single-cell Raman spectroscopy have proven their advances in reducing the turn-around time (TAT) of antimicrobial susceptibility tests (AST). However, the Raman-based methods are still hindered by the prolonged centrifugal cell washing procedure, which may require complex labor operation and induce high mechanical stress, resulting in a pretreatment time of over 1 h as well as a high cell-loss probability. In this study, we developed a micro-flow cell washing device and corresponding Raman-compatible washing chips, which were able to automatically remove the impurities in the samples, retain the bacterial cell and perform Raman spectra acquisition in situ.
View Article and Find Full Text PDFThe mechanism through which soil microorganisms mediate carbon and nutrient cycling during mine wasteland restoration remained unknown. Using soil metagenome sequencing, we investigated the dynamic changes in soil microbial potential metabolic functions during the transition from biological soil crusts (BSC) to mixed broad-conifer forest (MBF) in a typical PbZn mine. The results showed soil microorganisms favored carbon sequestration through anaerobic and microaerobic pathways, predominantly using efficient, low-energy pathways during succession.
View Article and Find Full Text PDFConstructed wetlands (CWs) have been widely used for treating polluted water since the 1950s, with applications in over 50 countries worldwide. Most studies investigating the pollutant removal efficiency of these wetlands have focused on differences among wetland designs, operation strategies, and environmental conditions. However, there still remains a gap in understanding the variation in wetland pollutant removal efficiency over different time scales.
View Article and Find Full Text PDFThe drivers and mechanisms underlying succession and the spontaneous formation of plant communities in mining wasteland remain largely unknown. This study investigated the use of nature-based restoration to facilitate the recovery of viable plant communities in mining wasteland. It was found that scientific analyses of spontaneously formed plant communities in abandoned mining areas can provide insights for nature-based restoration.
View Article and Find Full Text PDF