Gas multisensor devices offer an effective approach to monitor air pollution, which has become a pandemic in many cities, especially because of transport emissions. To be reliable, properly trained models need to be developed that combine output from sensors with weather data; however, many factors can affect the accuracy of the models. The main objective of this study was to explore the impact of several input variables in training different air quality indexes using fuzzy logic combined with two metaheuristic optimizations: simulated annealing (SA) and particle swarm optimization (PSO).
View Article and Find Full Text PDF