As genotype databases increase in size, so too do the number of detectable segments of identity by descent (IBD): segments of the genome where two individuals share an identical copy of one of their two parental haplotypes, due to shared ancestry. We show that given a large enough genotype database, these segments of IBD collectively overlap entire chromosomes, including instances of IBD that span multiple chromosomes, and can be used to accurately separate the alleles inherited from each parent across the entire genome. The resulting phase is not an improvement over state-of-the-art local phasing methods, but provides accurate long-range phasing that indicates which of two haplotypes in different regions of the genome, including different chromosomes, was inherited from the same parent.
View Article and Find Full Text PDFMultiple COVID-19 genome-wide association studies (GWASs) have identified reproducible genetic associations indicating that there is a genetic component to susceptibility and severity risk. To complement these studies, we collected deep coronavirus disease 2019 (COVID-19) phenotype data from a survey of 736,723 AncestryDNA research participants. With these data, we defined eight phenotypes related to COVID-19 outcomes: four phenotypes that align with previously studied COVID-19 definitions and four 'expanded' phenotypes that focus on susceptibility given exposure, mild clinical manifestations and an aggregate score of symptom severity.
View Article and Find Full Text PDF