Protein kinases constitute a major class of intracellular signaling molecules, and describe some of the most prominent drug targets. Kinase inhibitors commonly employ small chemical scaffolds that form hydrogen bonds with the kinase hinge residues connecting the N- and C-terminal lobes of the catalytic domain. In general the satisfied hydrogen bonds are required for potent inhibition, therefore constituting a conserved feature in the majority of inhibitor-kinase interactions.
View Article and Find Full Text PDFJ Comput Aided Mol Des
January 2014
Protein kinases are the second most prominent group of drug targets, after G-protein-coupled receptors. Despite their distinct inhibition mechanisms, the majority of kinase inhibitors engage the conserved hydrogen bond interactions with the backbone of hinge residues. We mined Pfizer internal crystal structure database (CSDb) comprising of several thousand of public as well as internal X-ray binary complexes to compile an inclusive list of hinge binding scaffolds.
View Article and Find Full Text PDFA major challenge for the discovery of protein kinase inhibitors is to identify potent, selective, and novel pharmacophores. In this issue, Fedorov et al. (2011) describes KH-CB19, an ATP-competitive inhibitor of cdc2-like kinase that interacts with the ATP hinge region through a halogen-bonding motif.
View Article and Find Full Text PDFMethods Mol Biol
February 2011
We present here a workflow for designing a kinase-targeted library (KTL) with the goal of capturing known kinase inhibitor chemical space. We validated our design retrospectively using recent, high-throughput screening data and found significant enrichment of kinase inhibitor hits while retaining majority of the active kinase inhibitor series. To further assist kinase projects in triaging KTL screen hits, we also developed a methodology to systematically annotate known kinase inhibitors in the KTL with regard to their binding modes.
View Article and Find Full Text PDFA series of acyloxyalkyl and amidooxyalkyl ketones appended to a carbobenzyloxy aspartic acid core have been prepared. The most potent of these new inhibitors was 4i with a K(i) of 0.5 microM.
View Article and Find Full Text PDFSuccinic acid amides have been found to be effective P2-P3 scaffold replacements for peptidic ICE inhibitors. Heteroarylalkyl fragments occupying the P4 position provided access to compounds with nM affinities. Utilization of an acylal prodrug moiety was required to overcome biopharmaceutical issues which led to the identification of 17f, a potential clinical candidate.
View Article and Find Full Text PDFMutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution-phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT-KIT.
View Article and Find Full Text PDFBackground: Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.
View Article and Find Full Text PDFThe development of a series of novel 4-substituted-2-aminopyrimidines as inhibitors of c-Jun N-terminal kinases is described. The synthesis, in vitro inhibitory values for JNK1, and the in vitro inhibitory value for a c-Jun cellular assay are discussed. Optimization of microsomal clearance led to the identification of 9c, whose kinase selectivity is reported.
View Article and Find Full Text PDFMost gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor.
View Article and Find Full Text PDFBMC Bioinformatics
November 2008
Background: Designing small-molecule kinase inhibitors with desirable selectivity profiles is a major challenge in drug discovery. A high-throughput screen for inhibitors of a given kinase will typically yield many compounds that inhibit more than one kinase. A series of chemical modifications are usually required before a compound exhibits an acceptable selectivity profile.
View Article and Find Full Text PDFExpert Opin Drug Discov
June 2008
Background: The number of drugs in active clinical development or on the market that target the unactivated conformational states of protein kinases is growing and represents a significant portion of kinase research at biopharmaceutical companies. These non-classical kinase inhibitors have a mode of action which may overcome some of the liabilities of classical ATP-site inhibitors that substantially overlap the space that ATP occupies in the activated kinase.
Objective: This review will discuss state-of-the-art methods of inhibiting protein kinases by targeting the unactivated conformations of the enzyme with small molecules directed to the ATP binding region.
A series of N-6 substituted 9-hydroxy-4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones were prepared from N-substituted (5-methoxyphenyl)ethenylindoles. The target compounds were tested for their ability to inhibit the G2/M cell cycle checkpoint kinases, Wee1 and Chk1. Analogues with neutral or cationic N-6 side chains were potent dual inhibitors.
View Article and Find Full Text PDFHigh-throughput screening has identified a novel class of inhibitors of the checkpoint kinase Wee1, which have potential for use in cancer chemotherapy. These inhibitors are based on a 4-phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione template and have been shown by X-ray crystallography to bind at the ATP site of the enzyme. An extensive study of the effects of substitution around this template has been carried out, which has identified substituents which lead to improvements in potency and selectivity for Wee1.
View Article and Find Full Text PDFSince the discovery that FK-506 promotes neurite outgrowth, considerable attention has been focused on the development of potent nonimmunosuppressive ligands for FK-506 binding proteins (FKBPs). Such neuroimmunophilin agents have been reported to show neuroregenerative activity in a variety of cell and animal models including neurite outgrowth, age-related cognitive decline, Parkinson's disease, peripheral nerve injury, optic nerve degeneration, and diabetic neuropathy. We have designed and synthesized a unique series of tetracyclic aza-amides that have been shown to be potent FKBP12 rotamase inhibitors.
View Article and Find Full Text PDFA novel class of reversible inhibitors of Interleukin-1beta-converting enzyme (ICE, caspase-1) were discovered by iterative structure-based design. Guided by the X-ray crystal structure of analogues 1, 7 and 10 bound to ICE, we have designed a nonpeptide series of small molecule inhibitors. These compounds incorporate an arylsulfonamide moiety which replaces Val-His unit (P3-P2 residues) amino acids of the native substrate.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2001
A series of compounds was designed and prepared as inhibitors of interleukin-1beta converting enzyme (ICE), also known as caspase-1. These inhibitors, which employ a diphenyl ether sulfonamide, were designed to improve potency by forming favorable interactions between the diphenyl ether rings and the prime side hydrophobic region. An X-ray crystal structure of a representative member of the diphenyl ether sulfonamide series bound to the active site of caspase-1 was obtained.
View Article and Find Full Text PDFDue largely to the emergence of multi-drug-resistant HIV strains, the development of new HIV protease inhibitors remains a high priority for the pharmaceutical industry. Toward this end, we previously identified a 4-hydroxy-5,6-dihydropyrone lead compound (CI-1029, 1) which possesses excellent activity against the protease enzyme, good antiviral efficacy in cellular assays, and promising bioavailability in several animal species. The search for a suitable back-up candidate centered on the replacement of the aniline moiety at C-6 with an appropriately substituted heterocyle.
View Article and Find Full Text PDFIsothermal titration calorimetry was used to analyze the binding of an enantiomeric pair of inhibitors to the stromelysin-1 catalytic domain. Differences in binding affinity are attributable to different conformational entropy penalties suffered upon binding. Two possible explanations for these differences are proposed.
View Article and Find Full Text PDFSaccharopepsin is a vacuolar aspartic proteinase involved in activation of a number of hydrolases. The enzyme has great structural homology to mammalian aspartic proteinases including human renin and we have used it as a model system to study the binding of renin inhibitors by X-ray crystallography. Five medium-to-high resolution structures of saccharopepsin complexed with transition-state analogue renin inhibitors were determined.
View Article and Find Full Text PDFOn the basis of previous SAR findings and molecular modeling studies, a series of compounds were synthesized which possessed various sulfonyl moieties substituted at the 4-position of the C-3 phenyl ring substituent of the dihydropyran-2-one ring system. The sulfonyl substituents were added in an attempt to fill the additional S(3)' pocket and thereby produce increasingly potent inhibitors of the target enzyme. Racemic and enantiomerically resolved varieties of selected compounds were synthesized.
View Article and Find Full Text PDFWith the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are implicated in diseases such as arthritis and cancer. Among these enzymes, stromelysin-1 can also activate the proenzymes of other MMPs, making it an attractive target for pharmaceutical design. Isothermal titration calorimetry (ITC) was used to analyze the binding of three inhibitors to the stromelysin catalytic domain (SCD).
View Article and Find Full Text PDFDihydropyran-2-ones possessing a sulfamate moiety at the 4-position of the thiophenyl ring were designed to reach S3' pocket of the HIV protease. Synthetic routes for the preparation of thiotosylates possessing 3-(2-t-butyl-5-methyl-4-sulfamate) phenylthio moiety were established. SAR of various sulfamate analogs including HIV protease binding affinities, antiviral activities and therapeutic indices will be described.
View Article and Find Full Text PDF5,6-Dihydro-2H-pyran-2-ones are potent inhibitors of HIV-1 protease, which bind to the S1, S2, S1', and S2' pockets and have a unique binding mode with the catalytic aspartyl groups and the flap region of the enzyme. Efforts to explore 3-position heterocyclic scaffolds that bind to the S1' and S2' pockets have provided a number of selected analogs that display high HIV-1 protease inhibitory activity. reserved.
View Article and Find Full Text PDF