Publications by authors named "Luning Zhao"

Gellan gum has been widely used in many industries due to its excellent physical properties. In this study, the effects of different fermentation conditions on molecular weight and production of gellan gum were analyzed, and the optimized fermentation conditions for a high molecular weight gellan gum (H-GG: 6.42 × 10 Da) were obtained, which increased the molecular weight and yield of gellan gum by 201.

View Article and Find Full Text PDF

can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated.

View Article and Find Full Text PDF

Chitosan is a natural polysaccharide that is abundant, biocompatible and exhibits effective antifungal activity against various pathogenic fungi. However, the potential intracellular targets of chitosan in pathogenic fungi and the way of activity of chitosan are far from well known. The present work demonstrated that chitosan could inhibit Penicillium expansum, the principal causal agent of postharvest blue mold decay on apple fruits, by binding to DNA and triggering apoptosis.

View Article and Find Full Text PDF

is the causal agent of blue mold decay on apple fruits and is also known to be the major producer of patulin, a mycotoxin that represents serious hazard to human health. Several mechanisms have been suggested to explain the pathogenesis of in host plants. Secreted effector proteins are vital for the pathogenicity of many fungal pathogens through manipulating their hosts for efficient colonization.

View Article and Find Full Text PDF

Nonadiabatic dynamical processes such as proton-coupled electron transfer and excited state intramolecular proton transfer have been the subject of much research. One of the promising theoretical methods to describe these processes is the nuclear-electronic orbital (NEO) approach. This approach inherently accounts for nuclear quantum effects within quantum chemistry calculations, and it has recently been extended to directly simulate nonadiabatic processes with the development of real-time NEO methods.

View Article and Find Full Text PDF

is the main pathogenic fungus that causes food mold. Effective control of contamination is essential to ensure food safety. The lipopeptides (LPs) produced by strains have been shown to have an obvious antifungal effect on molds.

View Article and Find Full Text PDF

The recent development of the Ehrenfest dynamics approach in the nuclear-electronic orbital (NEO) framework provides a promising way to simulate coupled nuclear-electronic dynamics. Our previous study showed that the NEO-Ehrenfest approach with a semiclassical traveling proton basis method yields accurate predictions of molecular vibrational frequencies. In this work, we provide a more thorough analysis of the semiclassical traveling proton basis method to elucidate its validity and convergence behavior.

View Article and Find Full Text PDF

The recently developed real-time nuclear-electronic orbital (RT-NEO) approach provides an elegant framework for treating electrons and selected nuclei, typically protons, quantum mechanically in nonequilibrium dynamical processes. However, the RT-NEO approach neglects the motion of the other nuclei, preventing a complete description of the coupled nuclear-electronic dynamics and spectroscopy. In this work, the dynamical interactions between the other nuclei and the electron-proton subsystem are described with the mixed quantum-classical Ehrenfest dynamics method.

View Article and Find Full Text PDF

The accurate description of excited vibronic states is important for modeling a wide range of photoinduced processes. The nuclear-electronic orbital (NEO) approach, which treats specified protons on the same level as the electrons, can describe excited electronic-protonic states. Herein the multicomponent equation-of-motion coupled cluster with singles and doubles (NEO-EOM-CCSD) method and its time-domain counterpart, TD-NEO-EOM-CCSD, are developed and implemented.

View Article and Find Full Text PDF

We present a formulation of excited state mean-field theory in which the derivatives with respect to the wave function parameters needed for wave function optimization (not to be confused with nuclear derivatives) are expressed analytically in terms of a collection of Fock-like matrices. By avoiding the use of automatic differentiation and grouping Fock builds together, we find that the number of times we must access the memory-intensive two-electron integrals can be greatly reduced. Furthermore, the new formulation allows the theory to exploit the existing strategies for efficient Fock matrix construction.

View Article and Find Full Text PDF

We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing the accuracy.

View Article and Find Full Text PDF

The quantum mechanical treatment of both electrons and nuclei is crucial in nonadiabatic dynamical processes such as proton-coupled electron transfer. The nuclear-electronic orbital (NEO) method provides an elegant framework for including nuclear quantum effects beyond the Born-Oppenheimer approximation. To enable the study of nonequilibrium properties, we derive and implement a real-time NEO (RT-NEO) approach based on time-dependent Hatree-Fock or density functional theory, in which the electronic and nuclear degrees of freedom are propagated in a time-dependent variational framework.

View Article and Find Full Text PDF

We investigate an extension of excited-state mean-field theory in which the energy expression is augmented with density functional components in an effort to include the effects of weak electron correlations. The approach remains variational and entirely time independent, allowing it to avoid some of the difficulties associated with linear response and the adiabatic approximation. In particular, all of the electrons' orbitals are relaxed state specifically, and there is no reliance on Kohn-Sham orbital energy differences, both of which are important features in the context of charge transfer.

View Article and Find Full Text PDF

We present an approach to studying optical band gaps in real solids in which quantum Monte Carlo methods allow for the application of a rigorous variational principle to both ground and excited state wave functions. In tests that include small, medium, and large band gap materials, optical gaps are predicted with a mean absolute deviation of 3.5% against experiment, less than half the equivalent errors for typical many-body perturbation theories.

View Article and Find Full Text PDF

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo.

View Article and Find Full Text PDF

We present a modification to variational Monte Carlo's linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involving both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions.

View Article and Find Full Text PDF

Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method nonvariational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles.

View Article and Find Full Text PDF

Objective: To investegate the role of calcineurin (CaN) and its downstream nuclear factor of activated T-cells (NFATc3) in abdominal aorta restenosis following balloon dilatation in rats.

Methods: SD rats were randomly divided into sham-operated group, balloon group and cyclosporine A (CsA) group. The rats in the latter two groups were subjected to abdominal aorta injury with balloon dilatation, and those in CsA group were treated with CsA at the daily dose of 12.

View Article and Find Full Text PDF

Aim: In this study we designed a modified method of abdominal aortic constriction (AAC) in order to establish a stable animal model of left ventricular hypertrophy (LVH). We also evaluated cardiac structure and function in rats with myocardial hypertrophy using echocardiography, and provide a theory and experimental basis for the application of drug interventions using the LVH animal model. We hope this model will provide insight into novel clinical therapies for LVH.

View Article and Find Full Text PDF

An equation of motion formalism for excited states in variational Monte Carlo is derived, and a pilot implementation for the Jastrow-modified antisymmetric geminal power is tested. In single excitations across a range of small molecules, this combination is shown to be intermediate in accuracy between configuration interaction singles and equation of motion coupled cluster with singles and doubles. For double excitations, energy errors are found to be similar to those for coupled cluster.

View Article and Find Full Text PDF

We present a variational principle that enables systematically improvable predictions for individual excited states through an efficient Monte Carlo evaluation. We demonstrate its compatibility with different ansatzes and with both real space and Fock space sampling and discuss its potential for use in the solid state. In numerical demonstrations for challenging molecular excitations, the method rivals or surpasses the accuracy of very high level methods using drastically more compact wave function approximations.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is a compensatory stage of the heart in response to stress such as pressure overload (PO), which can develop into heart failure (HF) if left untreated. Resveratrol has been reported to prevent the development of hypertrophy and contractile dysfunction induced by PO. However, other studies found that resveratrol treatment for a longer period of time failed to regress cardiac hypertrophy.

View Article and Find Full Text PDF

This study was aimed to establish a stable animal model of left ventricular hypertrophy (LVH) to provide theoretical and experimental basis for understanding the development of LVH. The abdominal aorta of male Wistar rats (80-100 g) was constricted to a diameter of 0.55 mm between the branches of the celiac and anterior mesenteric arteries.

View Article and Find Full Text PDF