Comonomer defects can induce semicrystalline polymers to form unique crystalline structures (., defect crystals), which can greatly influence the materials' physical properties. However, the formation mechanism and structural evolution of defect polymer crystals are not yet well understood.
View Article and Find Full Text PDFIn high molecular weight poly(L-lactic acid)/poly(D-lactic acid) (HMW PLLA/PDLA) blends, the construction of exclusive stereocomplex crystals (SC) with high crystallinity and strong melt memory remains a great challenge. In the present study, various norbornene dicarboxylate complexes (TMXNa, Mg, Al, or Ca) were employed as the stereo-selective nucleating agents (NAs), and their effect on the crystallization characteristics, rheological behavior, and heat resistance of PLLA/PDLA blends were thoroughly studied. Strikingly, TMX-Al facilitated the construction of exclusive SC with over 50 % crystallinity and excellent melt memory.
View Article and Find Full Text PDFThe slow crystallization and weak mechanical features of poly (butylene adipate-co-terephthalate) (PBAT) have become a severe industrial problem in food packaging. Inspired by principle of bionic structure, functional cellulose nanocrystals (CNC) modified with hexamethylene diisocyanate (HMDI) and toluene diisocyanate (TDI) can enhance the crystallization ability and mechanical properties of PBAT nanocomposites. Significantly, CNC-T (CNC modified by TDI) showed a stronger reinforced effect on PBAT properties than unmodified CNCs and CNC-H (CNC modified by HMDI) nanofillers due to hydrogen bonds, π-π interaction between PBAT matrix and CNC-T nanofillers with benzene ring structure.
View Article and Find Full Text PDF