The retention of solutes on two fluorinated low temperature glassy carbon (F-LTGC) stationary phases under reversed-phase liquid chromatographic conditions was studied by employing the solvation parameter model. The two fluorinated glassy carbon stationary phases were produced by slowly heating zirconia particles that were encapsulated with oligo[1,3-dibutadiyne-1,3-(tetrafluoro)phenylene] precursor polymer to two different final temperatures (200 and 400 degrees C). The resulting carbon particles had different amounts of fluorine after thermal processing.
View Article and Find Full Text PDFSpectroscopic barcoding was recently introduced as a new pre-encoding strategy wherein the resin beads are not just carriers for solid phase synthesis, but are, in addition, the repository of the synthetic scheme to which they were subjected. To expand the repertoire of spectroscopically barcoded resins (BCRs), here we introduce a new family of halogenated polystyrene-based polymers designed for high-throughput combinatorial analysis using not only infrared and Raman spectroscopy but also imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS). In particular, we have established that (a) the halogen content of these new resins can be used as an encoding element in quantitative imaging ToF-SIMS and (b) the number of styrene monomers used to generate unique vibrational fingerprints can be significantly reduced by using monomers in different molar ratios.
View Article and Find Full Text PDFSolid-phase microextraction (SPME) fibers with supported fluorinated glassy carbon are demonstrated for the first time. Oligo[1,3-dibutadiynylene-1,3-(tetrafluoro)phenylene] was synthesized and heated to temperatures that varied from 200 to 1000 degrees C to produce the fluorinated glassy carbon. The extent of graphitization of the glassy carbon increased as the processing temperature increased.
View Article and Find Full Text PDFHere we describe the preparation of 25 beaded polystyrene-poly(ethylene glycol) graft copolymers from six spectroscopically active styrene monomers: styrene, 2,5-dimethylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, 4-tert-butylstyrene, and 3-methylstyrene. These polymers were thoroughly characterized by Raman, infrared, and (1)H/(13)C NMR spectroscopies, and differential scanning calorimetry. Determination of the swelling properties, peptide synthesis, and on-bead streptavidin-alkaline phosphatase (SAP) binding assay further established that their physical and chemical properties where not significantly altered by the diversity of their encoded polystyrene core.
View Article and Find Full Text PDF