The introduction of point-of-care testing (POCT) has revolutionized medical testing by allowing for simple tests to be conducted near the patient's care point, rather than being confined to a medical laboratory. This has been especially beneficial for developing countries with limited infrastructure, where testing often involves sending specimens off-site and waiting for hours or days for results. However, the development of POCT devices has been challenging, with simplicity, accuracy, and cost-effectiveness being key factors in making these tests feasible.
View Article and Find Full Text PDFPeptide drugs and biologics provide opportunities for treatments of many diseases. However, due to their poor stability and permeability in the gastrointestinal tract, the oral bioavailability of peptide drugs is negligible. Nanoparticle formulations have been proposed to circumvent these hurdles, but systemic exposure of orally administered peptide drugs has remained elusive.
View Article and Find Full Text PDFPeptides represent a promising therapeutic class with the potential to alleviate many severe diseases. A key limitation of these active molecules relies on the difficulties for their efficient oral administration. The objective of this work has been the rational design of polymer nanocapsules (NCs) intended for the oral delivery of peptide drugs.
View Article and Find Full Text PDFSingle-layer protamine and double layer polysialic acid (PSA)/protamine nanocapsules (NCs) were designed in order to be used as carriers to facilitate the transport of macromolecules across the intestinal epithelium. The rational for the design of these NCs was based on that protamine is a non-toxic yet potent cell-penetrating peptide, capable of translocating protein cargos through cell membranes, while PSA is a low molecular weight polysaccharide used to enhance the stability of macromolecules and nanocarriers. The aim of this work was to study in vitro the mechanism of interaction of these NCs with different intestinal cell models (Caco-2, Caco-2/Raji mimicking follicle associated epithelium and Caco-2/HT29-MTX to study the effect of mucus).
View Article and Find Full Text PDFProtein and peptide-based drugs are preferred therapeutics due to their specificity but are mainly administered by injection. Alternative routes for peptide delivery are preferred because of their ease of administration and increased patient compliance. Areas covered: This review provides a critical overview of current strategies for non-invasive mucosal delivery routes of therapeutic proteins and peptides, with emphasis on their advantages and limitations.
View Article and Find Full Text PDF