Publications by authors named "Lunbo Duan"

Simultaneous CO/NO removal from flue gas is extensively attracted to meet the goal of atmospheric pollutant and carbon mitigations. An optimized CaO-CO system via the design of the bio-modified calcium-based pellet is proposed in which the pyrolysis of biomass ensures efficient CO/NO removal. Since the type of biomass shows great influence on the characteristics of pyrolysis products which may influence the behavior of reaction, the correlations of characteristics of biomass structural components, modified Ca-sorbent, and CO/NO removal reactivity were established with the support of experimental results and Density functional theory (DFT) calculation.

View Article and Find Full Text PDF

Solid waste incineration is a clean and sustainable approach for solid waste management. However, ash deposition and corrosion remain a critical issue due to fuel's inherent enrichment of alkali chlorine. This study develops an integrated online deposition and corrosion monitoring system to enhance the operational safety and efficiency of solid waste incineration boilers.

View Article and Find Full Text PDF

Product selectivity of solar-driven CO reduction and HO oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H).

View Article and Find Full Text PDF

HO dissociation plays a crucial role in solar-driven catalytic CO methanation, demanding high temperature even for solar-to-chemical conversion efficiencies <1% with modest product selectivity. Herein, we report an oxygen-vacancy (V) rich CeO catalyst with single-atom Ni anchored around its surface V sites by replacing Ce atoms to promote HO dissociation and achieve effective photothermal CO reduction under concentrated light irradiation. The high photon flux reduces the apparent activation energy for CH production and prevents V from depletion.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to create a ZrO photocatalyst enriched with oxygen vacancies, featuring Co single atoms and Ni clusters on its surface.
  • The catalyst significantly enhances CO reduction in HO vapor, achieving high yields and selective efficiency for solar-to-chemical energy conversion.
  • The performance improvements are linked to the unique roles of Co and Ni, enabling extended absorption of light and efficient CO activation through enhanced interaction with solar energy.
View Article and Find Full Text PDF

Rotary kiln (RK) incineration technology gains prominence in waste management, aiming to reduce pollution, recover energy, and minimize waste. Oxygen-carrier (OC)-aided incineration of waste in the RK demonstrates notable benefits by enhancing oxygen distribution uniformity and facilitating fuel conversion. However, the effects of OC on ash-related alkali and heavy metals during waste incineration in the RK remain unknown.

View Article and Find Full Text PDF

Ammonium ion batteries are promising for energy storage with the merits of low cost, inherent security, environmental friendliness, and excellent electrochemical properties. Unfortunately, the lack of anode materials restricts their development. Herein, we utilized density functional theory calculations to explore the VCT MXene as a promising anode with a low working potential.

View Article and Find Full Text PDF

Combustion is an effective and cost-efficient thermochemical conversion method for solid waste, showing promise for the resource utilization of shoe manufacturing waste (SMW). However, SMW is generally composed of different components, which can lead to unstable combustion and excessive pollutant emissions, especially NO. To date, combustion characteristics, reaction mechanism and fuel nitrogen (fuel-N) conversion of different SMW components remain unclear.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have attracted tremendous interest because of their tunable structures, functionalities, and physiochemical properties. The nearly infinite combinations of metal nodes and organic linkers have led to the synthesis of over 100,000 experimental MOFs and the construction of millions of hypothetical counterparts. It is intractable to identify the best candidates in the immense chemical space of MOFs for applications via conventional trial-to-error experiments or brute-force simulations.

View Article and Find Full Text PDF

Petrochemical industry is a key industry of soil pollution, which presents great effects on human health and the ecological environment. It is of great significance to achieve rapid, economic and efficient health risk identification for petrochemical industry in China. In this work, an efficient method was developed based on extreme gradient boosting (XGBoost) algorithm for human health risk identification, which is different from the traditional health risk assessment with complicated procedures.

View Article and Find Full Text PDF

Herein we report the development of synthetic CaO-based sorbents for enhanced CO capture in calcium looping via a template-assisted synthesis approach, where carbonaceous spheres (CSs) derived from hydrothermal reaction of starch are used as the templates. Cage-like CaO hollow microspheres are successfully synthesized only using urea as the precipitant, and the formation mechanism of this unique hollow microsphere structure is discussed deeply. Moreover, cage-like CaO hollow microspheres possess an initial carbonation conversion of 98.

View Article and Find Full Text PDF

Four types of synthetic sorbents were developed for high-temperature post-combustion calcium looping CO capture using Longcal limestone. Pellets were prepared with: lime and cement (LC); lime and flour (LF); lime, cement and flour (LCF); and lime, cement and flour doped with seawater (LCFSW). Flour was used as a templating material.

View Article and Find Full Text PDF

Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid-gas phase transition of metal(loid)s during gasification.

View Article and Find Full Text PDF

NO formation during combustion of four typical kinds of straw (wheat straw, rice straw, cotton stalk and corn stalk) which belong to soft straw and hard straw was studied in a tubular quartz fixed bed reactor under conditions relevant to grate boiler combustion. Regarding the real situation in biomass fired power plants in China, NO formation from blended straw combustion was also investigated. Nitrogen transfer during blended straw pyrolysis was performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer.

View Article and Find Full Text PDF