The regulation of root Plasma membrane (PM) Intrinsic Protein (PIP)-type aquaporins (AQPs) is potentially important for salinity tolerance. However, the molecular and cellular details underlying this process in halophytes remain unclear. Using free-flow electrophoresis and label-free proteomics, we report that the increased abundance of PIPs at the PM of the halophyte ice plant (Mesembryanthemum crystallinum L.
View Article and Find Full Text PDFThe methylerythritol 4-phosphate (MEP) pathway is of paramount importance for generating plastidial isoprenoids. The first enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), catalyzes a flux-controlling step. In plants the DXS gene family is composed of three distinct classes with non-redundant functions.
View Article and Find Full Text PDFThe function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis.
View Article and Find Full Text PDFFront Plant Sci
April 2017
Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, cDNA was cloned into an expression vector and the recombinant protein was purified and characterized.
View Article and Find Full Text PDFThis data article contains data related to the research article titled Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts (de Luna-Valdez et al., 2014) [1]. This research article describes the 2-D PAGE-based proteomic analysis of wild-type and four mutant lines (cla1-1, clb2, clb5 and clb19) affected in the development of Arabidopsis thaliana chloroplasts.
View Article and Find Full Text PDFUnlabelled: Plant cells outstand for their ability to generate biomass from inorganic sources, this phenomenon takes place within the chloroplasts. The enzymatic machinery and developmental processes of chloroplasts have been subject of research for several decades, and this has resulted in the identification of a plethora of proteins that are essential for their development and function. Mutant lines for the genes that code for those proteins, often display pigment-accumulation defects (e.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture.
View Article and Find Full Text PDF