Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity.
View Article and Find Full Text PDFThe deproteinization of chitosan is a necessary purification process for materials with biomedical purposes; however, chitosan sourcing and purification methods can modify its molecular weight, deacetylation degree, and residual proteins. These factors affect the reactive groups that affect the immunomodulatory activities of cells, particularly macrophages and monocytes; considering this activity is key when developing successful and functional biomaterials. Here, two brands of chitosan were purified and used to synthesize nanoparticles to evaluate their immunomodulatory effect on monocyte and macrophage differentiation.
View Article and Find Full Text PDFThis study investigated the potential of self-nanoemulsifying drug delivery systems (SNEDDS) to optimize the oral bioavailability of insulin. Insulin complexes with phospholipids and enzymatically-modified phospholipids were developed and incorporated into the SNEDDS using Lauroglycol FCC as the oily phase and Cremophor EL and Labrafil M1944CS as the surfactant and co-surfactant, respectively. Additionally, mucoadhesive polysaccharides (sodium alginate and guar gum) were added further to enhance the bioavailability of insulin in these systems.
View Article and Find Full Text PDFA sensor for uric acid (UA) based on the urate oxidase enzyme (UOx) immobilized in novel Co-based aerogels with transition metals synthesized by the sol-gel method was developed and evaluated. The Co-based aerogels: Co, Ni-Co and Pd-Co were physicochemically characterized by XRD and HR-TEM. The surface area values of 53, 57 and 66 m g-1 were determined for Co, Ni-Co and Pd-Co, respectively by N adsorption-desorption technique.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Betulinic acid (BA) is a natural compound with significant potential for treating various diseases, including cancer and AIDS, and possesses additional anti-inflammatory and antibacterial properties. However, its clinical application is limited because of its low solubility in water, which impairs its distribution within the body. To overcome this challenge, nanoemulsions have been developed to improve the bioavailability of such poorly soluble drugs.
View Article and Find Full Text PDFBreast and gynecological cancers are major health concerns due to their increasing incidence rates, and in some cases, their low survival probability. In recent years, multiple compounds of natural origin have been analyzed as alternative treatments for this disease. For instance, Acetogenins are plant secondary metabolites from the Annonaceae family, and its potential anticancer activity has been reported against a wide range of cancer cells both in vitro and in vivo.
View Article and Find Full Text PDFIn this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution a CTS-mediated reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges).
View Article and Find Full Text PDFThis work presents the modification of glassy carbon electrodes (GCE) by using a dispersion resulting from the non-covalent functionalization of multi-walled carbon nanotubes (MWCNT) with polyarginine (polyArg). MWCNT-polyArg is used for the quantification of ascorbic acid (AA) in the presence of acetaminophen (APAP) and viceversa. Since ascorbic acid and acetaminophen are strongly absorbed on GCE/MWCNT-polyArg, they can be detected in the presence of 4.
View Article and Find Full Text PDFThree-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications.
View Article and Find Full Text PDFIn 2021, global plastics production was 390.7 Mt; in 2022, it was 400.3 Mt, showing an increase of 2.
View Article and Find Full Text PDFChitosan hydrogels are biomaterials with excellent potential for biomedical applications. In this study, chitosan hydrogels were prepared at different concentrations and molecular weights by freeze-drying. The chitosan sponges were physically crosslinked using sodium bicarbonate as a crosslinking agent.
View Article and Find Full Text PDFBisphenol A (BPA) promotes colon cancer by altering the physiological functions of hormones. Quercetin (Q) can regulate signaling pathways through hormone receptors, inhibiting cancer cells. The antiproliferative effects of Q and its fermented extract (FEQ, obtained by Q gastrointestinal digestion and in vitro colonic fermentation) were analyzed in HT-29 cells exposed to BPA.
View Article and Find Full Text PDFCurr Pharm Biotechnol
July 2023
Background: The need to combat and reduce the incidence, virulence, and drug resistance of species belonging to genus, has led to the development of new strategies. Nanotechnology, through the implementation of nanomaterials, has emerged as an infallible tool to treat various diseases caused by pathogens, where its mechanisms of action prevent the development of undesirable pharmacological resistance.
Objective: The antifungal activity and adjuvant properties of biogenic silver nanoparticles in different species (, and ) are evaluated.
The encapsulation of magnetic nickel nanowires (NiNWs) with gelatin is proposed as an alternative for optical label detection. Magnetic nanowires can be detected at very low concentrations using light-scattering methods. This detection capacity could be helpful in applications such as transducers for molecular and biomolecular sensors; however, potential applications require the attachment of specific binding molecules to the nanowire structure.
View Article and Find Full Text PDFProbiotic bacteria are widely used to prepare pharmaceutical products and functional foods because they promote and sustain health. Nonetheless, probiotic viability is prone to decrease under gastrointestinal conditions. In this investigation, Lactiplantibacillus plantarum spp.
View Article and Find Full Text PDFMolecules
October 2022
The estrogenic receptor beta (ERβ) protects against carcinogenesis by stimulating apoptosis. Bisphenol A (BPA) is related to promoting cancer, and naringenin has chemoprotective activities both can bind to ERβ. Naringenin in the colon is metabolized by the microbiota.
View Article and Find Full Text PDFHerein, we report the synthesis of Au nanoparticles (AuNPs) in chitosan (CTS) solution by chemically reducing HAuCl. CTS was further functionalized with glycidyl methacrylate (chitosan-g-glycidyl methacrylate/AuNP, CTS-g-GMA/AuNP) to improve the mechanical properties for cellular regeneration requirements of CTS-g-GMA/AuNP. Our nanocomposites promote excellent cellular viability and have a positive effect on cytokine regulation in the inflammatory and anti-inflammatory response of skin cells.
View Article and Find Full Text PDFThe objective of this work was to find the optimal conditions by thermosonication-assisted extraction (TSAE) of the total acetogenin content (TAC) and yield from seeds, assessing the effect of the temperature (40, 50, and 60 °C), sonication amplitude (80, 90, and 100%), and pulse-cycle (0.5, 0.7, and 1 s).
View Article and Find Full Text PDFMaterials (Basel)
July 2022
The detection of toxic insecticides is a major scientific and technological challenge. In this regard, imidacloprid is a neonicotinoid that is a systemic insecticide that can accumulate in agricultural products and affect human health. This work aims to study the properties of chitosan-TiO nanocomposites in which nanoparticles with high surface area serve as molecular recognition sites for electroanalytical imidacloprid detection.
View Article and Find Full Text PDFNanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However, this process remains limited due to the need for proper synthesis-property strategies. Herein, we report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable properties by chemically reducing HAuCl in chitosan solutions and different HAuCl/sodium citrate molar relationships.
View Article and Find Full Text PDFChitosan-gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl content. Two relaxation processes in the nanocomposites have been observed.
View Article and Find Full Text PDFConsiderable attention has been given to the use of chitosan (CS)-based materials reinforced with inorganic bioactive signals such as hydroxyapatite (HA) to treat bone defects and tissue loss. It is well known that CS/HA based materials possess minimal foreign body reactions, good biocompatibility, controlled biodegradability and antibacterial property. Herein, the bioactivity of these composite systems was analyzed on in vitro bone cell models for their applications in the field of bone tissue engineering (BTE).
View Article and Find Full Text PDF