Understanding the physics of lignin will help rationalize its function in plant cell walls as well as aiding practical applications such as deriving biofuels and bioproducts. Here, we present SPRIG (Simple Polydisperse Residue Input Generator), a program for generating atomic-detail models of random polydisperse lignin copolymer melts i.e.
View Article and Find Full Text PDFIn this study, porous aerogels were prepared by directional freeze-drying via cross-linking cellulose nanocrystals (CNCs) with poly(methyl vinyl ether-co-maleic acid) (PMVEMA) and poly(ethylene glycol) (PEG). The thermal properties and physical adsorption performance toward cation methylene blue dye of the obtained CNC aerogels were investigated. The maximum degradation temperature was increased from 324°C of CNCs to 355°C of cross-linked CNC aerogels.
View Article and Find Full Text PDFNanocelluloses (NCs) have remarkable mechanical properties and contain abundant surface functional groups that can be modified or cross-linked with other materials. They have been widely used as an environment-friendly reinforcing agent in polymer composites. However, for applications that are carried out in humid environments or aqueous suspensions, hydrophilicity of NCs lower their mechanical integrity.
View Article and Find Full Text PDFAligned micro- and nanoporous materials have gained tremendous interest since they provide great potential in organic electronics, absorbents, biomedicine and tissue engineering. Herein, cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) cross-linked with poly(methyl vinyl ether-co-maleic acid) (PMVEMA) and poly(ethylene glycol) (PEG) foams were prepared by both the directional and un-directional freezing techniques. Aligned three-dimensional porous structures were observed for the directional frozen foams after lyophilization via scanning electron microscope (SEM).
View Article and Find Full Text PDFA novel nanocomposite scaffold was developed by homogeneous deposition of hydroxyapatite (HAP) on a cellulose nanocrystals (CNCs) matrix suspended in a simulated body fluid (SBF). By adjusting the pH of the SBF, the HAP content in the nanocomposite could be controlled between 15 wt% and 47 wt%. Physical and chemical characteristics of the nanocomposites were analyzed by SEM, FTIR, XRD, SAED, and TEM, which confirmed the successful incorporation of HAP onto the CNCs.
View Article and Find Full Text PDF