Publications by authors named "Lumpkin A"

Distal radius fractures, carpal tunnel syndrome, and ulnar nerve compression are common causes of symptoms that result in patients presenting for hand evaluation. This is a unique case of a distal radius fracture leading to both carpal tunnel syndrome and ulnar nerve compression requiring urgent operative management.

View Article and Find Full Text PDF

We report observations of coherent optical transition radiation interferometry (COTRI) patterns generated by microbunched ∼200-MeV electrons as they emerge from a laser-driven plasma accelerator. The divergence of the microbunched portion of electrons, deduced by comparison to a COTRI model, is ∼9× smaller than the ∼3  mrad ensemble beam divergence, while the radius of the microbunched beam, obtained from COTR images on the same shot, is <3  μm. The combined results show that the microbunched distribution has estimated transverse normalized emittance ∼0.

View Article and Find Full Text PDF

In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based x-ray phase-contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-µm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated.

View Article and Find Full Text PDF

This study examined the effects of utilizing a wearable activity tracker in a credit-based physical activity instructional program (PAIP) for promoting physical activity (PA) in college students. Fourteen PAIP courses in a large public university were randomly assigned into intervention (k = 7; n = 101) and control (k = 7; n = 86) groups. All courses focused on a core curriculum that covers basic exercise and behavioral science contents through lectures and activity sessions.

View Article and Find Full Text PDF

A real-time interferometer (RTI) has been developed to monitor the bunch length of an electron beam in an accelerator. The RTI employs spatial autocorrelation, reflective optics, and a fast response pyro-detector array to obtain a real-time autocorrelation trace of the coherent radiation from an electron beam thus providing the possibility of online bunch-length diagnostics. A complete RTI system has been commissioned at the A0 photoinjector facility to measure sub-mm bunches at 13 MeV.

View Article and Find Full Text PDF

An experimental program to demonstrate a novel phase-space manipulation in which the horizontal and longitudinal emittances of a particle beam are exchanged has been completed at the Fermilab A0 Photoinjector. A new beam line, consisting of a TM(110) deflecting mode cavity flanked by two horizontally dispersive doglegs has been installed. We report on the first direct observation of transverse and longitudinal emittance exchange.

View Article and Find Full Text PDF

We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beam line capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to examine metabolic effects of soldier performance on a simulated road march, comparing two functionally equivalent military ensembles (FEMEs) with changing gradation of marching, and to create prediction equations addressing workload with different loads and treadmill grades.

Methods: Fourteen male military subjects were tested while wearing two different FEMEs on a graded (0%, 5%, or 10%), 3.5 miles/h, road march for 30 minutes.

View Article and Find Full Text PDF

We report the first measurements of z-dependent coherent optical transition radiation (COTR) due to electron-beam microbunching at high gains ( >10(4)) including saturation of a self-amplified spontaneous emission free-electron laser (FEL). In these experiments the fundamental wavelength was near 530 nm, and the COTR spectra exhibit the transition from simple spectra to complex spectra ( 5% spectral width) after saturation. The COTR intensity growth and angular distribution data are reported as well as the evidence for transverse spectral dependencies and an "effective" core of the beam being involved in microbunching.

View Article and Find Full Text PDF

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point.

View Article and Find Full Text PDF

We report the first measurements of the electron-beam microbunching z dependence in a self-amplified spontaneous-emission (SASE) free-electron laser (FEL) experiment by the observation of visible wavelength coherent transition radiation (CTR). In this case the fundamental SASE wavelength was at 537 nm, and the CTR exhibited an exponential intensity growth similar to the SASE radiation. In addition, we observed for the first time structure in the CTR angular distribution patterns that may be useful for optimizing SASE FEL performance.

View Article and Find Full Text PDF