Background: Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency.
View Article and Find Full Text PDFOxid Med Cell Longev
January 2019
Wfs1 deficiency leads to a progressive loss of plasma insulin concentration, which should reduce the consumption of glucose in insulin-dependent tissues, causing a variety of changes in intracellular energy metabolism. Our objective here was to assess the changes in the amount and function of mitochondrial proteins in different muscles of Wfs1-deficient mice. Mitochondrial functions were assayed by high-resolution oxygraphy of permeabilized muscle fibers; the protein amount was evaluated by liquid chromatography tandem mass spectrometry (LC/MS/MS) analysis and mRNA levels of the uncoupler proteins UCP2 and UCP3 by real-time PCR; and citrate synthase (CS) activity was determined spectrophotometrically in muscle homogenates.
View Article and Find Full Text PDFBackground: Impaired intestinal integrity, including increased permeability of the small bowel mucosa, has been shown in patients with celiac disease (CD) as well as with type 1 diabetes (T1D). Zonulin (ZO, pre-haptoglobin), a tight junction regulator, plays a particular role in the regulation of intestinal barrier function and in the pathogenesis of the above-mentioned diseases.
Aim: To investigate whether enteroviruses (EVs) and immunoregulatory cells are associated with intestinal permeability in patients with CD alone and with coexistent T1D.
BACKGROUND. Ageing is associated with suppressed regenerative potential of muscle precursor cells due to decrease of satellite cells and suppressive intramuscular milieu on their activation, associated with ageing-related low-grade inflammation. The aim of the study was to characterize the function of oxidative phosphorylation (OXPHOS), glycolysis, adenylate kinase (AK), and creatine kinase (CK) mediated systems in young and older individuals.
View Article and Find Full Text PDFCardiac energy metabolism with emphasis on mitochondria was addressed in atrial tissue from patients with overload-induced atrial dilation. Structural remodeling of dilated (D) atria manifested as intracellular accumulation of fibrillar aggregates, lipofuscin, signs of myolysis and autophagy. Despite impaired complex I dependent respiration and increased diffusion restriction for ADP, no changes regarding adenylate and creatine kinase occurred.
View Article and Find Full Text PDFThe present study was undertaken to characterize and review the changes in energy metabolism in rat myocardium in response to chronic exhaustive exercise. It was shown that a treadmill exercise program applied for six weeks led the rats into a state characterized by decreased performance, loss of body weight and enhanced muscle catabolism, indicating development of overtraining syndrome. Electron microscopy revealed disintegration of the cardiomyocyte structure, cellular swelling and appearance of peroxisomes.
View Article and Find Full Text PDFThe aim of this review is to analyze the results of experimental research of mechanisms of regulation of mitochondrial respiration in cardiac and skeletal muscle cells in vivo obtained by using the permeabilized cell technique. Such an analysis in the framework of Molecular Systems Bioenergetics shows that the mechanisms of regulation of energy fluxes depend on the structural organization of the cells and interaction of mitochondria with cytoskeletal elements. Two types of cells of cardiac phenotype with very different structures were analyzed: adult cardiomyocytes and continuously dividing cancerous HL-1 cells.
View Article and Find Full Text PDFWe studied possible connections of tubulin, microtubular system, and microtubular network stabilizing STOP protein with mitochondria in rat and mouse cardiac and skeletal muscles by confocal microscopy and oxygraphy. Intracellular localization and content of tubulin was found to be muscle type-specific, with high amounts in oxidative muscles, and much lower in glycolytic skeletal muscle. STOP protein localization and content in muscle cells was also muscle type-specific.
View Article and Find Full Text PDFComparative analysis of the bioenergetic parameters of adult rat cardiomyocytes (CM) and HL-1 cells with very different structure but similar cardiac phenotype was carried out with the aim of revealing the importance of the cell structure for regulation of its energy fluxes. Confocal microscopic analysis showed very different mitochondrial arrangement in these cells. The cytochrome content per milligram of cell protein was decreased in HL-1 cells by a factor of 7 compared with CM.
View Article and Find Full Text PDFExpression and function of creatine kinase (CK), adenylate kinase (AK) and hexokinase (HK) isoforms in relation to their roles in regulation of oxidative phosphorylation (OXPHOS) and intracellular energy transfer were assessed in beating (B) and non-beating (NB) cardiac HL-l cell lines and adult rat cardiomyocytes or myocardium. In both types of HL-1 cells, the AK2, CKB, HK1 and HK2 genes were expressed at higher levels than the CKM, CKMT2 and AK1 genes. Contrary to the saponin-permeabilized cardiomyocytes the OXPHOS was coupled to mitochondrial AK and HK but not to mitochondrial CK, and neither direct transfer of adenine nucleotides between CaMgATPases and mitochondria nor functional coupling between CK-MM and CaMgATPases was observed in permeabilized HL-1 cells.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2006
Energy metabolism in gastrobiopsy specimens of the antral and corpus mucosa, treated with saponin to permeabilize the cells, was studied in patients with gastric diseases. The results show twice lower oxidative capacity in the antral mucosa than in the corpus mucosa and the relative deficiency of antral mitochondria in complex I. The mucosal cells expressed mitochondrial and cytosolic isoforms of creatine kinase and adenylate kinase (AK).
View Article and Find Full Text PDFThe cellular energy metabolism in human musculus gluteus medius (MGM) under normal conditions and hip osteoarthritis (OA) was explored. The functions of oxidative phosphorylation and energy transport systems were analyzed in permeabilized (skinned) muscle fibers by oxygraphy, in relation to myosin heavy chain (MHC) isoform distribution profile analyzed by SDS-PAGE, and to creatine kinase (CK) and adenylate kinase (AK) activities measured spectrophotometrically in the intact muscle. The results revealed high apparent Km for ADP in regulation of respiration that decreased after addition of creatine in MGM of traumatic patients (controls).
View Article and Find Full Text PDFThe effect of IgG purified from the sera of healthy persons and patients with primary biliary cirrhosis (PBC) and chronic hepatitis (CH) on ADP dependent respiration (oxidative phosphorylation) in skinned muscle fibers from rat oxidative muscles (heart and M. soleus) and glycolytic skeletal muscle (M. gastrocnemius) was studied.
View Article and Find Full Text PDFKindred DNA amplification is a novel and cost-effective method developed to isolate common cDNA fragments between two distinct cDNA populations. Unlike subtractive hybridization, which discards common sequences, kindred DNA amplification isolates and amplifies these sequences within a single hybridization procedure. The utility of this method is demonstrated by cloning the genes in common between two different but metabolically homologous muscles, murine ventricular myocardium and soleus.
View Article and Find Full Text PDF