Publications by authors named "Luminiṭa Marin"

Liposomes, small bilayer phospholipid-containing vesicles, are frequently used to ensure slow drug release for a prolonged and improved therapeutic effect. Nevertheless, current findings on the membrane affinity and permeability of the anticancer agent 5-fluorouracil (5-FU) are confounding, which leads to a lack of a clear understanding of how lipid composition impacts the distribution of 5-FU within liposomal structures and its delivery. In the current work, we report a comprehensive coarse-grained molecular dynamics (CGMD) investigation on the influence of cholesterol (CHOL) and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) on the partitioning of 5-FU in 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) double-bilayer systems, as well as its in vitro release from liposomes with identical lipid compositions.

View Article and Find Full Text PDF

Plasma-activated chitosan (PAC) colloids for cancer treatment were obtained by using the cold atmospheric plasma technique. Chitosan solutions were irradiated by plasma ignited in argon gas and in a mixture of argon with nitrogen and oxygen gases in certain ratios. The structural modifications of chitosan and the chemical species generated in plasma were investigated by EPR, LC-MS/MS, XRD, DLS, and TGA methods.

View Article and Find Full Text PDF

The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy.

View Article and Find Full Text PDF

Investigating the interaction between liposomes and proteins is of paramount importance in the development of liposomal formulations with real potential for bench-to-bedside transfer. Upon entering the body, proteins are immediately adsorbed on the liposomal surface, changing the nanovehicles' biological identity, which has a significant impact on their biodistribution and pharmacokinetics and ultimately on their therapeutic effect. Albumin is the most abundant plasma protein and thus usually adsorbs immediately on the liposomal surface.

View Article and Find Full Text PDF

This paper focuses on the preparation of chitosan-based nanofibers embedding copper oxide nanoparticles to create multifunctional materials that meet the demands of contemporary applications. To this end, a mixture of chitosan, quaternized chitosan and poly (ethylene glycol) was used as polymeric matrix, considering their own contribution to the final material's properties and their ability to stabilize the copper oxide nanoparticles. An exhaustive investigation of the nanofibers was done in order to assess their composition and morphology (FTIR, H NMR, WXRD, TGA, SEM, TEM, POM, UV-vis) and to study their mechanical, antimicrobial and antioxidant properties, air and water permeability and ability for air filtration.

View Article and Find Full Text PDF

The paper aimed to prepare quaternary chitosan-based nanofibers as bioabsorbable wound dressings. To this aim, fully biodegradable chitosan/N,N,N-trimethyl chitosan (TMC) nanofibers were designed and prepared via electrospinning, using poly(ethylene glycol) as sacrificial additive. The new biomaterials were structurally and morphologically characterized by FTIR and NMR spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy, and their properties required for wound dressings application were investigated and discussed in detail.

View Article and Find Full Text PDF

The paper reports new chitosan-based nanofibers, designed to address the healing of burn wounds. To this aim, mesoporous chitosan fiber mats were prepared by electrospinning using poly(ethylene oxide) as sacrificial additive, followed by loading with norfloxacin and coating with an antifungal agent via dynamic imine bonds. Dynamic vapor sorption experiment proved intra-fiber mesopores around 2.

View Article and Find Full Text PDF

Microbial infections are a serious healthcare related problem, causing several complications and even death. That is why, the development of new drug delivery systems with prolonged effect represents an interesting research topic. This study presents the synthesis and characterization of new hydrogels based on chitosan and three halogenated monoaldehydes.

View Article and Find Full Text PDF

The industrial production of chitosan, initiated over 50 years ago, has transformed its application across diverse industries, agriculture, and medicine. To enhance its properties, numerous chitosan derivatives have been synthesized. The quaternization of chitosan has proven beneficial, as it not only enhances its properties but also imparts water solubility, expanding its potential for a wider range of applications.

View Article and Find Full Text PDF

The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure-antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay.

View Article and Find Full Text PDF

The aim of this work was to investigate the ability of a solid-state material, prepared by crosslinking chitosan with a phenothiazine-based aldehyde, to remove copper (II) ions from aqueous solutions, in a fast and selective manner. The metal uptake experiments, including the retention, sensibility, and selectivity against eight different metal ions, were realized via batch adsorption studies. The capacity of the material to retain copper (II) ions was investigated by spectrophotometric measurements, using poly(ethyleneimine) complexation agent, which allowed detection in a concentration range of 5-500 µM.

View Article and Find Full Text PDF

Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide).

View Article and Find Full Text PDF

A mixture of polymeric complexes based on the reaction between Re(CO)Cl and the porous polymeric network coming from the coupling of melamine and benzene-1,3,5-tricarboxaldehyde was obtained and characterized by FTIR, NMR, SEM, XPS, ICP, XRD, and cyclic voltammetry (CV). The formed rhenium-based porous hybrid material reveals a noticeable capability of CO absorption. The gas absorption amount measured at 295 K was close to 44 cm/g at 1 atm.

View Article and Find Full Text PDF

This paper reports new solid materials based on TEGylated phenothiazine and chitosan, with a high capacity to recover mercury ions from aqueous solutions. They were prepared by hydrogelation of chitosan with a formyl derivative of TEGylated phenothiazine, followed by lyophilization. Their structural and supramolecular characterization was carried out by H-NMR and FTIR spectroscopy, as well as X-ray diffraction and polarized light microscopy.

View Article and Find Full Text PDF

Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. It became popular immediately after its discovery in 1952, due to its therapeutic effect against pathogens resistant to other drugs. Despite this major advantage, ERY exhibits several drawbacks, raising serious clinical challenges.

View Article and Find Full Text PDF

The present study reports the synthesis and characterization of 12 drug delivery systems (DDS) for the co-delivery of antifungal and antiviral agents. The systems were obtained by an in situ hydrogelation method of 6 chitosan oligomers with values of the polymerization degree between 14 and 51, with 2-formylphenylboronic acid, in the presence of tenofovir. The structural characterization by NMR and FTIR spectroscopy demonstrated the formation of imine linkages, while WXRD revealed the 3D layered architecture of the systems.

View Article and Find Full Text PDF

The paper aims at the preparation of chitosan self-healing hydrogels, designed as carriers for local drug delivery by parenteral administration. To this aim, 30 hydrogels were prepared using chitosan and pyridoxal 5-phosphate (P5P), the active form of vitamin B6 as precursors, by varying the ratio of glucosamine units and aldehyde on the one hand and the water content on the other hand. The driving forces of hydrogelation were investigated by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, and polarized light microscopy (POM) measurements.

View Article and Find Full Text PDF

Introduction: Cancer is a big challenge of the 21 century, whose defeat requires efficient antitumor drugs.

Objectives: The paper aims to investigate the synergistic effect of two structural building blocks, phenothiazine and poly(ethylene glycol), towards efficient antitumor drugs.

Methods: Two PEGylated phenothiazine derivatives were synthetized by attaching poly(ethylene glycol) of 550 Da to the nitrogen atom of phenothiazine by ether or ester linkage.

View Article and Find Full Text PDF

The purpose of the study was to develop new antimicrobial hydrogels from natural resources that may promote wound healing and prevent bacterial skin infection. The new hydrogels were synthesized by crosslinking chitosan with a vanillin isomer, 5-methoxysalicylaldehyde, by a friendly and easy method. To characterize these hydrogels, their structural and morphological properties were explored by FTIR, H NMR, SEM, POM, and TGA.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment.

View Article and Find Full Text PDF

Supramolecular hydrogels based on chitosan and monoaldehydes are biomaterials with high potential for a multitude of bioapplications. This is due to the proper choice of the monoaldehyde that can tune the hydrogel properties for specific practices. In this conceptual framework, the present paper deals with the investigation of a hydrogel as bioabsorbable wound dressing.

View Article and Find Full Text PDF

Microporous chitosan nanofibers functionalized with different amounts of an antimicrobial agent via imine linkage were prepared by a three-step procedure including the electrospinning of a chitosan/PEO blend, PEO removal and acid condensation reaction in a heterogeneous system with 2-formylphenylboronic acid. The fibers' characterization was undertaken keeping in mind their application to wound healing. Thus, by FTIR and H-NMR spectroscopy, it was confirmed the successful imination of the fibers and the conversion degree of the amine groups of chitosan into imine units.

View Article and Find Full Text PDF

The detection of heavy metals, such as Hg and Fe, is of great significance. In this work, fluorescent small-molecule BODIPY (BY-3) bearing CC group was synthesized firstly. And then, the chitosan-based polymer sensor CY-1 was synthesized through the spontaneous NH/C≡C click reaction.

View Article and Find Full Text PDF

The paper reports hydrogels prepared from chitooligosaccharides with different polymerization degrees (14 to 51), by crosslinking with 2-formylphenylboronicacid in three molar ratios of their functionalities. The structural, morphological and supramolecular characterization confirmed a hydrogelation mechanism based on self-assembling of newly formed imine units and porous morphology. Rheological measurements confirmed the formation of thixotropic hydrogels, and swelling tests indicated mass equilibrium swelling values up to 25 in water and 9 in phosphate buffer saline.

View Article and Find Full Text PDF

Vitamin B6 is an essential micronutrient in the mammalian diet, with role of coenzyme and synergistic effect with some antibiotics and antitumor drugs. Based on these, we hypothesized that its use for the preparation of hydrogels can yield multifunctional biomaterials suitable for in vivo applications. To this aim, chitosan was reacted with the active form of vitamin B6, pyridoxal 5-phosphate, via acid condensation, when clear hydrogels were obtained.

View Article and Find Full Text PDF