Purpose: The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported.
Methods: The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays.
Introduction: Inflammation play important roles in the initiation and progression of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), septic shock, clotting dysfunction, or even death associated with SARS-CoV-2 infection. However, the pathogenic mechanisms underlying SARS-CoV-2-induced hyperinflammation are still largely unknown.
Methods: The animal model of septic shock and ALI was established after LPS intraperitoneal injection or intratracheal instillation.
Golgi protein 73 (GP73), also called Golgi membrane protein 1 (GOLM1), is a resident Golgi type II transmembrane protein and is considered as a serum marker for the detection of a variety of cancers. A recent work revealed the role of the secreted GP73 in stimulating liver glucose production and systemic glucose homeostasis. Since exaggerated hepatic glucose production plays a key role in the pathogenesis of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), GP73 may thus represent a potential therapeutic target for treating diabetic patients with pathologically elevated levels.
View Article and Find Full Text PDFRecent reports discovered that red blood cells (RBCs) could scavenge cell-free mitochondrial DNA (mtDNA), which drives the accelerated erythrophagocytosis and innate immune activation characterized by anemia and inflammatory cytokine production. However, the clinical value of the circulating mtDNA copy number alterations in hematologic malignancies is poorly understood. Our data showed that in comparison to healthy group, the patients group had significantly higher mtDNA and histone H4 levels.
View Article and Find Full Text PDFSevere cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection.
View Article and Find Full Text PDFThe prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice.
View Article and Find Full Text PDFis an intracellular bacterial pathogen that utilizes a type III secretion apparatus to inject effector proteins into host cells. The T3SS effector IpaH4.5 is important for the virulence of .
View Article and Find Full Text PDFResponsible for the ongoing coronavirus disease 19 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through binding of the viral spike protein (SARS-2-S) to the cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Here we show that the high-density lipoprotein (HDL) scavenger receptor B type 1 (SR-B1) facilitates ACE2-dependent entry of SARS-CoV-2. We find that the S1 subunit of SARS-2-S binds to cholesterol and possibly to HDL components to enhance viral uptake in vitro.
View Article and Find Full Text PDFFront Cell Infect Microbiol
May 2021
Activation of the NLRP3 inflammasome requires the expression of NLRP3, which is strictly regulated by its capacity to directly recognize microbial-derived substances. Even though the involvement of caspase-1 activation in macrophages NLRP3 and NLRC4 has been discovered, the accurate mechanisms by which infection triggers NLRP3 activation remain inadequately understood. Here, we demonstrate that IpaH4.
View Article and Find Full Text PDFRecent reports have shown the critical role of the mitochondrial antiviral signaling (MAVS) protein in virus-induced apoptosis, but the involvement of MAVS in tumorigenesis is still poorly understood. Herein, we report that MAVS is a key regulator of p53 activation and is critical for protecting against tumorigenesis. We find that MAVS promotes p53-dependent cell death in response to DNA damage.
View Article and Find Full Text PDFViral infection triggers the formation of mitochondrial antiviral signaling protein (MAVS) aggregates, which potently promote immune signaling. Autophagy plays an important role in controlling MAVS-mediated antiviral signaling; however, the exact molecular mechanism underlying the targeted autophagic degradation of MAVS remains unclear. Here, we investigated the mechanism by which RNF34 regulates immunity and mitophagy by targeting MAVS.
View Article and Find Full Text PDFHemostats, which are used for immediate intervention during internal hemorrhage in order to reduce resulting mortality and morbidity, are relatively rare. Here, we describe novel intravenous nanoparticles (CPG-NPs-2000) with chitosan succinate (CSS) as cores, polyethylene glycol (PEG-2000) as spacers and a glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide as targeted, active hemostatic motifs. CPG-NPs-2000 displayed significant hemostatic efficacy, compared to the saline control, CSS nanoparticles, and tranexamic acid in liver trauma rat models.
View Article and Find Full Text PDFHeparanase, an endo-glucuronidase that specifically cleaves heparan sulfate (HS), is upregulated in several pathological conditions. In this study, we aimed to find a correlation of heparanase expression and platelets production. In the transgenic mice overexpressing human heparanase (Hpa-tg), hematological analysis of blood samples revealed a significantly higher number of platelets in comparison with wild-type (Ctr) mice, while no significant difference was found in leukocytes and red blood cell number between the two groups.
View Article and Find Full Text PDFPancreatic cancer (PC), characterized by aggressive local invasion and metastasis, is one of the most malignant cancers. Gemcitabine is currently used as the standard drug for the treatment of advanced and metastatic PC, but with limited efficacy. In this study, we demonstrated that gemcitabine increased the expression of heparanase (HPA1), the only known mammalian endoglycosidase capable of cleaving heparan sulfate, both and .
View Article and Find Full Text PDFBackground: The tumor acidic microenvironment, a common biochemical event in solid tumors, offers evolutional advantage for tumors cells and even enhances their aggressive phenotype. However, little is known about the molecular mechanism underlying the acidic microenvironment-induced invasion and metastasis.
Methods: We examined the expression of the acid-sending ion channel (ASIC) family members after acidic exposure using RT-PCR and immunofluoresence.