Publications by authors named "Luming Guo"

Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics.

View Article and Find Full Text PDF

The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are the sole output neurons conveying visual stimuli from the retina to the brain, and dysfunction or loss of RGCs is the primary determinant of visual loss in traumatic and degenerative ocular conditions. Currently, there is a lack of RGC-specific Cre mouse lines that serve as invaluable tools for manipulating genes in RGCs and studying the genetic basis of RGC diseases. The RNA-binding protein with multiple splicing (RBPMS) is identified as the specific marker of all RGCs.

View Article and Find Full Text PDF

Haplo-insufficiency of the GATA3 gene causes hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome. Previous studies have shown that Gata3 is required for the development of the prosensory domain and spiral ganglion neurons (SGNs) of the mouse cochlea during embryogenesis. However, its role in supporting cells (SCs) after cell fate specification is largely unknown.

View Article and Find Full Text PDF

Retinal bipolar cells (BCs) connect with photoreceptors and relay visual information to retinal ganglion cells (RGCs). Retina-specific deletion of Lhx4 in mice results in a visual defect resembling human congenital stationary night blindness. This visual dysfunction results from the absence of rod bipolar cells (RBCs) and the loss of selective rod-connecting cone bipolar cell (CBC) subtypes and AII amacrine cells (ACs).

View Article and Find Full Text PDF

In order to identify genes involved in the development of inner ear hair cells, we investigated the role of the transcription factor Islet-class LIM-homeodomain (LIM-HD) 1 (Isl1) in the development of the mouse prosensory region. Isl1 was deleted using the Pax2-Cre system, and deletion of both alleles was verified using cochlea sections. Changes in the number of prosensory region cells were measured to determine the effect of Isl1 on the development of the mouse prosensory region.

View Article and Find Full Text PDF

LHX4 is a LIM-homeodomain transcription factor essential for the development of spinal cord and pituitary gland. Mice with homozygous Lhx4-null mutation suffer early postnatal death from lung defect. In this study, to facilitate the research on Lhx4 function, we designed a targeting construct to generate two novel Lhx4 mouse lines: Lhx4 conditional knockout and Lhx4 reporter knock-in mice.

View Article and Find Full Text PDF

Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs.

View Article and Find Full Text PDF