Publications by authors named "Lumin Yu"

Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is currently recognized not only as a significant nosocomial pathogen but also is an emerging bacterial infection in food-producing animals, posing a critical threat to global health. However, this is a hindrance to detailed bioinformatic studies of MDR A.

View Article and Find Full Text PDF
Article Synopsis
  • Avian pathogenic Escherichia coli (APEC) causes major economic losses in the poultry industry and has developed ways to survive oxidative stress, which damages its cellular components.
  • The study of regulation systems like quorum sensing, transcription factors, and small regulatory RNAs is crucial for understanding how APEC responds to oxidative stress and develops resistance.
  • The review proposes investigating connector proteins that link these regulatory systems to find new drug targets, potentially improving strategies for controlling APEC infections in poultry.
View Article and Find Full Text PDF
Article Synopsis
  • The bacterium studied is a common part of the human gut microbiota but has evolved into a multidrug-resistant pathogen causing hospital infections.
  • Most research has focused on this bacterium in oxygen-rich conditions, while its natural gut environment is low-oxygen, which has been overlooked.
  • A study created a library of mutants to identify key genes crucial for anaerobic growth, revealing important insights into its carbohydrate metabolism and ability to colonize the gut.
View Article and Find Full Text PDF

Mammary pathogenic Escherichia coli (MPEC) is an important causative agent of mastitis in dairy cows that results in reduced milk quality and production, and is responsible for severe economic losses in the dairy industry worldwide. Oxidative stress, as an imbalance between reactive oxygen species (ROS) and antioxidants, is a stress factor that is common in most bacterial habitats. The presence of ROS can damage cellular sites, including iron-sulfur clusters, cysteine and methionine protein residues, and DNA, and may cause bacterial cell death.

View Article and Find Full Text PDF

Fungi are important resources for drug development, as they have a diversity of genes, that can produce novel secondary metabolites with effective bioactivities. Here, five depsidone-based analogs were isolated from the rice media of Chaetomium brasiliense SD-596. Their structures were elucidated using NMR and mass spectrometry analysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) causes a variety of bacterial infectious diseases known as avian colibacillosis leading to significant economic losses in the poultry industry worldwide and restricting the development of the poultry industry. The development of efflux pumps is one important bacterial antibiotic resistance mechanism. Efflux pumps are capable of extruding a wide range of antibiotics out of the cytoplasm of some bacterial species, including β-lactams, polymyxins, tetracyclines, fluoroquinolones, aminoglycosides, novobiocin, nalidixic acid, and fosfomycin.

View Article and Find Full Text PDF

Avian pathogenic (APEC) is a subgroup of extra-intestinal pathogenic (ExPEC) strains that cause avian colibacillosis, resulting in significant economic losses to the poultry industry worldwide. It has been reported that a few two-component signal transduction systems (TCS) participate in the regulation of the virulence factors of APEC infection. In this study, a -deficient mutant strain was constructed from its parent strain APECX40 (WT), and high-throughput sequencing (RNA-seq) was performed to analyse the transcriptional profile of WT and its mutant strain XY1.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a specific group of extraintestinal pathogenic E. coli that causes a variety of extraintestinal diseases in chickens, ducks, pigeons, turkeys, and other avian species. These diseases lead to significant economic losses in the poultry industry worldwide.

View Article and Find Full Text PDF

Due to excessive use of antimicrobial agents in the treatment of infectious diseases, bacteria have developed resistance to antibacterial drugs and toxic compounds. The development of multidrug efflux pumps is one of the important mechanisms of bacterial drug resistance. A multidrug efflux pump, EmrD, belonging to the major facilitator superfamily of transporters, confers resistance to many antimicrobial agents.

View Article and Find Full Text PDF

Background: Mastitis is one of the most common infectious diseases in dairy cattle and causes significant financial losses in the dairy industry worldwide. Antibiotic therapy has been used as the most effective strategy for clinical mastitis treatment. However, due to the extensive use of antibacterial agents, antimicrobial resistance (AMR) is considered to be one of the reasons for low cure rates in bovine mastitis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) causes a variety of extraintestinal diseases known as colibacillosis and is responsible for significant economic losses in the poultry industry worldwide. Biofilm formation results in increased morbidity and persistent infections, and is the main reason for the difficult treatment of colibacillosis with antimicrobial agents. It is reported that the transcriptional regulator McbR regulates biofilm formation and mucoidy by repressing the expression of the periplasmic protein YbiM, and activates the transcription of the yciGFE operon by binding to the yciG promoter in E.

View Article and Find Full Text PDF

Background: Mastitis is an inflammatory reaction of the mammary gland tissue, which causes huge losses to dairy farms throughout the world. is the most frequent agent associated with this disease. isolates, which have the ability to form biofilms, usually lead to chronic mastitis in dairy cows.

View Article and Find Full Text PDF

Background: is an important opportunistic pathogen that could cause inflammation of the udder in dairy cows resulting in reduced milk production and changes in milk composition and quality, and even death of dairy cows. Therefore, mastitis is the main health issue which leads to major economic losses on dairy farms. Antibiotics are routinely used for the treatment of bovine mastitis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) causes airsacculitis, polyserositis, septicemia, and other mainly extraintestinal diseases in chickens, ducks, geese, pigeons, and other avian species, and is responsible for great economic losses in the avian industry. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In clinical APEC strains, whether or not AI-2 affects the expression of antibiotic-related genes has not been reported.

View Article and Find Full Text PDF

Extended-spectrum β-lactamase-positive Escherichia coli is an important causative agent of mastitis in dairy cows that results in reduced milk production and quality, and is responsible for severe economic losses in the dairy industry worldwide. The quorum sensing signaling molecule autoinducer 2 (AI-2) is produced by many species of gram-negative and gram-positive bacteria, and might be a universal language for intraspecies and interspecies communication. Our previous work confirmed that exogenous AI-2 increases the antibiotic resistance of extended-spectrum β-lactamase-positive E.

View Article and Find Full Text PDF

Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E.

View Article and Find Full Text PDF