It is a dream that future synthetic chemistry can mimic living systems to process multistep cascade reactions in a one-pot fashion. One of the key challenges is the mutual destruction of incompatible or opposing reagents, for example, acid and base, oxidants and reductants. A conceptually novel strategy is developed here to address this challenge.
View Article and Find Full Text PDFA series of mesoporous silica-based catalysts with finely-tuned surface wettability have been synthesized, of which the catalysis efficiency towards aqueous hydrogenations is highly dependent on their surface wettability and can be five times higher than that of the commercial Pd/C catalyst.
View Article and Find Full Text PDFWith the recent advances in nanoscience and nanotechnology, more and more nanoparticle catalysts featuring high accessibility of active sites and high surface area have been explored for their use in various chemical transformations, and their rise in popularity among the catalysis community has been unprecedented. The industrial applications of these newly discovered catalysts, however, are hampered because the existing methods for separation and recycling, such as filtration and centrifugation, are generally unsuccessful. These limitations have prompted development of new methods that facilitate separation and recycling of nanoparticle catalysts, so as to meet the burgeoning demands of green and sustainable chemistry.
View Article and Find Full Text PDFA general strategy that avoids stirring for organic/aqueous reactions involving solid catalysts is reported. The strategy involves converting a conventional biphasic system into a Pickering emulsion phase with micrometer-scale droplets ensuring good mixing. In test reactions, nitrotoluene reduction and epoxidation of allylic alcohols, the reaction efficiency is comparable to conventional stirrer-driven biphasic catalysis reaction systems.
View Article and Find Full Text PDF