Publications by authors named "Lulu Chai"

Metal-air secondary batteries with ultrahigh specific energies have received vast attention and are considered new promising energy storage. The slow redox reactions between oxygen-water molecules lead to low energy efficiency (55-71%) and limited applications. Herein, it is proposed that the MIL-68(In)-derived porous carbon nanotube supports the CoNiFeP heteroconjugated alloy catalyst with an overboiling point electrolyte to achieve the ultrahigh oxidation rate of water molecules.

View Article and Find Full Text PDF

The direct recovery of high-purity PbO from spent lead paste without a pre-desulfation process has significant industrial promise. Herein, we propose a recyclable, ultra-fast, and high value-added closed-loop of high-purity PbO recovery process by intensive multidentate coordination of histidine with crude 2PbO·PbSO by a rotating liquid-film (RLF) reactor and CO carbonation-dissociation. Parameter optimizations and kinetic calculations show the leaching time is shortened from 40 min to 60 s with 99.

View Article and Find Full Text PDF

Background: The present study aimed to analyze and compare the efficacy of the anterolateral and posterolateral approaches for surgical treatment of supination-external rotation type IV ankle fractures.

Methods: This retrospective study enrolled 60 patients (60 feet) with supination-external rotation type IV ankle fractures, including 30 patients (30 feet) treated by means of the anterolateral approach and 30 patients (30 feet) treated by means of the posterolateral approach. Postoperative clinical efficacy was compared between the groups based on operation time, intraoperative blood loss, postoperative complications, fracture healing time, visual analog scale scores, Short Form-36 Health Survey scores, and American Orthopedic Foot and Ankle Society scores.

View Article and Find Full Text PDF

Precise control of pore volume and size of carbon nanoscale materials is crucial for achieving high capacity and rate performances of charge/discharge. In this paper, starting from the unique mechanism of the role of In, Zn combination, and carboxyl functional groups in the formation of the lumen and pore size, the composition of InZn-MIL-68 is regulated to precisely tune the diameter and wall pore size of the hollow carbon tubes. The hollow carbon nanotubes (CNT) with high-capacity storage and fast exchange of Na ions and charges are prepared.

View Article and Find Full Text PDF

Pursuing high power density with low platinum catalysts loading is a huge challenge for developing high-performance fuel cells (FCs). Herein, a new super fuel cell (SFC) is proposed with ultrahigh output power via specific electric double-layer capacitance (EDLC) + oxygen reduction reaction (ORR) parallel discharge, which is achieved using the newly prepared catalyst, single-atomic platinum on bimetallic metal-organic framework (MOF)-derived hollow porous carbon nanorods (Pt /HPCNR). The Pt /HPCNR-based SFC has a 3.

View Article and Find Full Text PDF

The new low-cost clean pre-desulfation technology is very important in pyrometallurgy and hydrometallurgy. However, traditional reactors have low space-time yield and desulfation rate, resulting in high energy consumption and SO emissions in the industrial desulfation processes. Herein, dual rotating liquid film reactors (RLFRs) and lime are proposed to construct a recyclable, ultra-fast, and value-added desulfation method.

View Article and Find Full Text PDF

Despite the increasing awareness of long-term care (LTC) research after the outbreak of COVID-19 pandemic, little attention was given to quantitatively describe the evolution of the research field during this period. A total of 1024 articles retrieved from the Web of Science Core Collection database were systematically analyzed using CiteSpace visualization software. The overall characteristics analysis showed that, in the context of the pandemic, attention to LTC research increased significantly-over 800 articles were published in the past two years.

View Article and Find Full Text PDF

High-performance rechargeable oxygen electrodes are key devices for realizing high-specific-energy batteries, including zinc-air and lithium-air batteries. However, these batteries have severe problems of premature decay in energy efficiency by serious corrosion, wide charge-discharge gap, and catalyst peeling off. Herein, we propose a "smart dual-oxygen electrode", which is composed of an intelligent switch control module + heterostructured FeNi-LDH/PNCNF OER catalysis electrode layer + ion conductive | electronic insulating membrane + Pt/C ORR catalysis electrode layer, where OER and ORR layers are automatically switched by the intelligent switch control module as required.

View Article and Find Full Text PDF

Hollow carbon materials are regarded as crucial support materials in catalysis and electrochemical energy storage on account of their unique porous structure and electrical properties. Herein, an indium-based organic framework of InOF-1 can be thermally carbonized under inert argon to form indium particles through the redox reaction between nanosized indium oxide and carbon matrix. In particular, a type of porous hollow carbon nanostraw (HCNS) is in situ obtained by combining the fusion and removal of indium within the decarboxylation process.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a way to use light and a nickel catalyst to create esters from phenols and aldehydes without needing extra chemicals or light helpers.
  • This method worked well with many different types of chemicals and produced good amounts of a specific product called aryl benzoates.
  • They also discovered that this system could effectively help combine aldehydes and phenols while producing hydrogen gas at the same time.
View Article and Find Full Text PDF

The quiescent electrolyte causes serious concentration polarization and dendrite problems during the charging and discharging of the battery, which restricts the development of metal secondary batteries and flow batteries. Herein, we report a new concept of ion motors, with which the directional driving and uniformity of the electrolyte are realized to eliminate the concentration polarization and dendritic phenomenon for secondary metal batteries and flow batteries without additional external energy. In this study, a dendrite-free secondary metal battery with ion motors is constructed to eliminate a considerable concentration polarization voltage by a tiny induced counter electromotive force generated by Lorentz force, significantly improving the output power and energy efficiency of the battery.

View Article and Find Full Text PDF

With the aging population increasing dramatically and the high cost of long-term care (LTC), long-term care insurance (LTCI) has expanded rapidly across the world. This review aims to summarize the status quo, evolution trends, and new frontiers of global LTCI research between 1984 and 2021 through a comprehensive retrospective analysis. A total of 1568 articles retrieved from the Web of Science Core Collection database were systematically analyzed using CiteSpace visualization software (CiteSpace 5.

View Article and Find Full Text PDF

Herein, we propose a new concept of energy storage system composed of a nonpolarized electrode and a polarized electrode (PPE) with an impressive energy density. It offered nearly 4 times higher energy density than that of carbon-based supercapacitor. Among the suggested potential PPE system, we introduced an electrodeposited nanozinc on the copper foam as the nearly nonpolarized electrode and a Zn-2,5-dihydroxyterephthalic acid (DHTA) metal-organic framework (MOF)-derived activated porous carbon as a nearly polarized electrode in KOH-ZnO electrolyte to constitute the C|Zn PPE system prototype.

View Article and Find Full Text PDF

Multiporous metal-organic frameworks (MOFs) have emerged as a subclass of highly crystalline inorganic-organic materials, which are endowed with high surface areas, tunable pores, and fascinating nanostructures. Heterostructured MOF-on-MOF composites are recently becoming a research hotspot in the field of chemistry and materials science, which focus on the assembly of two or more different homogeneous or heterogeneous MOFs with various structures and morphologies. Compared with one single MOF, the dual MOF-on-MOF composites exhibit unprecedented tunability, hierarchical nanostructure, synergistic effect, and enhanced performance.

View Article and Find Full Text PDF

The synthetic organic surfactants linear alkylbenzene sulfonate (LAS) and polycyclic aromatic hydrocarbon naphthalene (NAP), two common organic pollutants, are frequently detected in freshwater environments. However, the combined ecotoxicological risks associated with these pollutants have not been fully elucidated. The present study investigated the effects of individual and combined treatments of LAS and NAP on the growth and physiological responses of Spirodela polyrrhiza.

View Article and Find Full Text PDF

Low-cost heteroatom-doped carbon nanomaterials have been widely studied for efficient oxygen reduction reaction and energy storage and conversion in metal-air batteries. A Masson pine twigs-like 3-dimensional network construction of carbon nanofibers (CNFs) with abundant straight long Co, N, and S-doped carbon nanotubes (CNTs) is developed by thermal treatment of Co-based polymer coated onto polyacrylonitrile nanofiber network together with thiourea at 900 °C, denoted as CNFT-Co S -900. It is interesting to note that the introduction of a high concentration of sulfur does not lead to the complete toxicity of catalysts, but promotes the axial growth to selectively form straight CNTs instead of curly bamboo-like CNTs.

View Article and Find Full Text PDF

In this work, a hierarchically activated porous carbon (APC) was synthesized using fluorine-containing metal-organic framework via facile combined carbonization and KOH activation treatments. The influences of activation conditions on the surface structures and electrochemical performance of APC were systematically studied. Afterwards, the electrochemical responses of APC electrode were further assessed from the cyclic voltammetry and galvanostatic charge-discharge examinations by 6 M KOH electrolyte.

View Article and Find Full Text PDF

An efficient method has been developed for photocatalytic P(O)-C(sp) coupling of (hetero)aryl halides with H-phosphine oxides or H-phosphites under the irradiation of visible light or sunlight. The thioxanthen-9-one/nickel dual catalysis mediates this phosphonylation to give arylphosphine oxides and arylphosphonates in moderate to excellent yields. This transformation is widely tolerant to a range of functional groups and proceeds efficiently on a gram scale.

View Article and Find Full Text PDF

In the preparation of nanomaterials, the kinetics and thermodynamics in the reaction can significantly affect the structures and phases of nanocrystals. Therefore, people are keen to adopt various synthetic strategies to accurately assemble the target nanocrystals, and reveal the underlying mechanism of the formation of specific structures. In this work, the total reaction time is adjusted to let the prepared MnCo Prussian blue analogous (MnCoPBA) crystals show four evolving morphological changes at different stages with the assistance of sodium dodecyl sulfate.

View Article and Find Full Text PDF

Nickel-cobalt borides (denoted as NCBs) have been considered as a promising candidate for aqueous supercapacitors due to their high capacitive performances. However, most reported NCBs are amorphous that results in slow electron transfer and even structure collapse during cycling. In this work, a nanocrystallized NCBs-based supercapacitor is successfully designed via a facile and practical microimpinging stream reactor (MISR) technique, composed of a nanocrystallized NCB core to facilitate the charge transfer, and a tightly contacted Ni-Co borates/metaborates (NCB ) shell which is helpful for OH adsorption.

View Article and Find Full Text PDF

The presence of surfactants may affect the bioavailability of polycyclic aromatic hydrocarbons. A hydroponic experiment was conducted to investigate the response of Hydrocharis dubia (Bl.) Backer to different concentrations of linear alkylbenzene sulfonate (LAS), naphthalene (NAP) and their mixture (0.

View Article and Find Full Text PDF

For electrocatalysis, the development of highly active and low-cost stable electrocatalysts, which would be directly applied in cathodes for fuel cells that are regarded as the most promising candidates for clean energy conversion in the quest for alternatives to conventional fossil fuel technology, remains a massive challenge. In this context, oxygen reduction reaction (ORR) is a critical process under intense research for the direct conversion of chemical energy into electricity. Herein, a facile synthetic method is proposed for the preparation of hierarchically porous 2-dimensional nanosheets consisting of Fe4C and FeCo nanoparticles incorporated in N/S-doped carbon materials at 900 °C, denoted as InFeCo@CNS900.

View Article and Find Full Text PDF

The rational design and controllable preparation of carbon-based catalysts for oxygen reduction reactions (ORRs) are at the core of key technologies for fuel cells and chargeable batteries in the field of advanced energy conversion and storage. In the present study, a Co species was synthesized by tuning the Zn dopant content in a bimetallic zeolitic-imidazolate framework functionalized with carbon spheres (CoZn-ZIF/CS). Using CoZn-ZIF/CS as the precursor, Co nanoparticles on N-doped carbon spheres were generated at 1000 °C (CoZn-ZIF/CS-1000).

View Article and Find Full Text PDF

Water electrolysis is an emerging energy conversion technology, which is significant for efficient hydrogen (H) production. Based on the high-activity transition metal ions and metal alloys of ultrastable bifunctional catalyst, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the key to achieving the energy conversion method by overall water splitting (OWS). This study reports that the Co-based coordination polymer (ZIF-67) anchoring on an indium-organic framework (InOF-1) composite (InOF-1@ZIF-67) is treated followed by carbonization and phosphorization to successfully obtain CoP nanoparticles-embedded carbon nanotubes and nitrogen-doped carbon materials (CoP-InNC@CNT).

View Article and Find Full Text PDF