Publications by authors named "Lulin Min"

Diabetic patients have increased susceptibility to acute kidney injury (AKI), and AKI could progress to chronic tubulointerstitial injury and fibrosis, referred to as AKI-to-chronic kidney disease (AKI-to-CKD) transition. However, whether diabetes directly promotes AKI-to-CKD transition is not known. We previously showed that reticulon-1A (RTN1A), a gene highly upregulated in injured renal tubular epithelial cells (RTECs), promotes AKI-to-CKD transition in nondiabetic settings.

View Article and Find Full Text PDF

Background: Podocyte loss occurs in both primary and secondary glomerular diseases, leading to the progression of kidney disease. A large body of evidence suggests that apoptosis and detachment are the mechanisms mediating the reduction in podocyte numbers in glomerular diseases. Recent studies demonstrate a renal protective effect of protein S (PS) through the activation of Tyro3, one of the TAM receptors.

View Article and Find Full Text PDF

Background: DKD is a microvascular disease, and glomerular endothelial cell injury is a key pathological event in DKD development. Through unbiased screening of glomerular transcriptomes, we previously identified KLF2 as a highly regulated gene in diabetic kidneys. KLF2 exhibits protective effects in endothelial cells by inhibiting inflammation, thrombotic activation, and angiogenesis, all of which are protective for cardiovascular disease.

View Article and Find Full Text PDF
Article Synopsis
  • Parietal epithelial cells (PECs) can act as stem cells in the kidney glomeruli, differentiating into podocytes after podocyte loss, but the mechanisms of this differentiation are not well understood.
  • The differentiation process is marked by an increase in podocyte-specific markers like WT-1 and synaptopodin, which is hindered by a mitochondrial reactive oxygen species (ROS) inhibitor.
  • Key signaling molecules, Nrf2 and Brg1, play a significant role in promoting PECs' differentiation into podocytes, and their modulation can influence the efficiency of this process, indicating that mitochondrial ROS is crucial in this context.
View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is a microvascular complication of diabetes, and glomerular endothelial cell (GEC) dysfunction is a key driver of DKD pathogenesis. Krüppel-like factor 2 (KLF2), a shear stress-induced transcription factor, is among the highly regulated genes in early DKD. In the kidney, KLF2 expression is mostly restricted to endothelial cells, but its expression is also found in immune cell subsets.

View Article and Find Full Text PDF

Background: Uremia-associated immunodeficiency, mainly characterized by T cell dysfunction, exists in patients on maintenance hemodialysis (MHD) and promotes systemic inflammation. However, T cell senescence, one of the causes of T cell dysfunction, has not been clearly revealed yet. In this cross-sectional research, we aimed to study the manifestation of T cell premature senescence in MHD patients and further investigate the associated clinical factors.

View Article and Find Full Text PDF

Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. In our study we found that Adenosine triphosphate (ATP) content was significantly increased in the urine of diabetic mice. We examined the expression of all purinergic receptors in the renal cortex and found that only purinergic P2X7 receptor (P2X7R) expression was significantly increased in the renal cortex of wild-type diabetic mice and that the P2X7R protein partially co-localized with podocytes.

View Article and Find Full Text PDF

Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation.

View Article and Find Full Text PDF

IgA nephropathy is the most common primary glomerulonephritis and one of the leading causes of end-stage renal disease. We performed a randomized, controlled, prospective, open-label trial to determine whether leflunomide combined with low-dose corticosteroid is safe and effective for the treatment of progressive IgA nephropathy, as compared to full-dose corticosteroid monotherapy. Biopsy-proved primary IgA nephropathy patients with an estimated glomerular filtration rate ≥ 30 ml/min/1.

View Article and Find Full Text PDF