Publications by authors named "Lukyanov D"

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

Macrolactin A (McA) is a secondary metabolite produced by Bacillus species. It has been known for its antimicrobial properties since the late 1980s, although the exact mechanism of its antibacterial activity remains unknown. In this study, we have found that McA is an inhibitor of protein synthesis in bacteria.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) plays a central role in energy conversion and storage technologies. A promising alternative to precious metal catalysts are non-precious metal doped carbons. Considerable efforts have been devoted to cobalt-doped carbonized polyacrylonitrile catalysts, but the optimization of their catalytic performance remains a key challenge.

View Article and Find Full Text PDF

Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation.

View Article and Find Full Text PDF

Redox-conducting polymers based on SalEn-type complexes have attracted considerable attention due to their potential applications in electrochemical devices. However, their charge transfer mechanisms, physical and electrochemical properties remain unclear, hindering their rational design and optimization. This study aims to establish the influence of monomer geometry on the polymer's properties by investigating the properties of novel nonplanar SalEn-type complexes, poly[N,N'-bis(salicylidene)propylene-2-(hydroxy)diaminonickel(II)], and its analog with 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)-substituted bridge (MTS).

View Article and Find Full Text PDF

Electroactive polymer materials are known to play important roles in a vast spectrum of modern applications such as in supercapacitors, fuel cells, batteries, medicine, and smart materials, They are usually divided into two main groups: first, conducting π-conjugated organic polymers, which conduct electricity by cation-radicals delocalized over a polymer chain; second, redox polymers, which conduct electricity an electron-hopping mechanism. Polymer materials belonging to these two main groups have been thoroughly studied and their thermodynamic and kinetic models have been built. However, in recent decades a lot of mixed-type materials have been discovered and investigated.

View Article and Find Full Text PDF

Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles.

View Article and Find Full Text PDF

Our current understanding of whether B cell involvement in the tumor microenvironment benefits the patient or the tumor - in distinct cancers, subcohorts and individual patients - is quite limited. Both statements are probably true in most cases: certain clonal B cell populations contribute to the antitumor response, while others steer the immune response away from the desired mechanics. To step up to a new level of understanding and managing B cell behaviors in the tumor microenvironment, we need to rationally discern these roles, which are cumulatively defined by B cell clonal functional programs, specificities of their B cell receptors, specificities and isotypes of the antibodies they produce, and their spatial interactions within the tumor environment.

View Article and Find Full Text PDF

The conductivity of the polymeric energy storage materials is the key factor limiting their performance. Conductivity of polymeric NiSalen materials, a prospective class of energy storage materials, was found to depend strongly on the length of the bridge between the nitrogen atoms of the ligand. Polymers obtained from the complexes containing C alkyl and hydroxyalkyl bridges showed an electrical conductivity one order of magnitude lower than those derived from more common complexes with C alkyl bridges.

View Article and Find Full Text PDF

Nanopore sequencing (ONT) is a new and rapidly developing method for determining nucleotide sequences in DNA and RNA. It serves the ability to obtain long reads of thousands of nucleotides without assembly and amplification during sequencing compared to next-generation sequencing. Nanopore sequencing can help for determination of genetic changes leading to antibiotics resistance.

View Article and Find Full Text PDF

Anionic catechol-containing polymers represent a promising class of functional dopants for the capacity improvement of conductive polymers. For example, sulfonated poly(vinylcatechol) SPVC with outstanding theoretical capacity was used as a dopant for poly(ethylenedixythiophene) (PEDOT) conductive polymer, increasing its energy storage performance. However, such materials suffer from insufficient utilization of the theoretical capacity of SPVC originating from non-optimal morphology.

View Article and Find Full Text PDF

Cancer immunotherapy is predominantly based on T cell-centric approaches. At the same time, the adaptive immune response in the tumor environment also includes clonally produced immunoglobulins and clonal effector/memory B cells that participate in antigen-specific decisions through their interactions with T cells. Here, we investigated the role of infiltrating B cells in bladder cancer via patient dataset analysis of intratumoral immunoglobulin repertoires.

View Article and Find Full Text PDF

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored.

View Article and Find Full Text PDF

Originally, sensors based on surface acoustic waves are fabricated using photolithography, which becomes extremely expensive when a small series or even single elements are needed for the research. A laser thin film local evaporation technique is proposed to substitute the photolithography process in the production of surface acoustic wave based inertial sensors prototypes. To estimate its potential a prototype of a surface acoustic wave gyroscope sensing element was fabricated and tested.

View Article and Find Full Text PDF

Materials with a positive temperature coefficient have many applications, including overcharge and over-temperature protection in lithium-ion (Li-ion) batteries. The thermoresistive properties of an electrically conductive polymer, based on a Ni(salen)-type backbone, known as polyNiMeOSalen, were evaluated by means of in situ resistivity measurements. It was found that the polymer was conductive at temperatures below 220 °C; however, the polymer increased in resistivity by three orders of magnitude upon reaching 250 °C.

View Article and Find Full Text PDF

Mangrove is a rich and underexploited ecosystem with great microbial diversity for discovery of novel and chemically diverse antimicrobial compounds. The goal of the study was to explore the pharmaceutical actinobacterial resources from mangrove soil and gain insight into the diversity and novelty of cultivable actinobacteria. Consequently, 10 mangrove soil samples were collected from Futian and Maoweihai of China, and the culture-dependent method was employed to obtain actinobacteria.

View Article and Find Full Text PDF

An isoquinolinium-pyrrole donor-acceptor dyad was found to exhibit photocatalytic activity in oxygen-to-peroxide photoreduction with oxalate as a sacrificial electron donor. The concentration of hydrogen peroxide was shown to reach a plateau of 0.57 mM.

View Article and Find Full Text PDF

The diastereospecific and highly site-selective cycloaddition of N-arylazomethine ylides generated in situ from diethyl N-arylaziridine-2,3-dicarboxylates to C fullerene is reported. The reaction provides C fulleropyrrolidines in up to hundreds on a milligram scale as α- and β-adducts in a 4:1 ratio with a controlled stereochemical outcome: cis-aziridines give exclusively trans-adducts, and trans-aziridines give only cis-adducts. The H and C{H} NMR spectra for different isomeric adducts were recorded and analyzed to identify some characteristic features, which permit an easy identification of isomeric adducts of this type.

View Article and Find Full Text PDF

We suggest a concept design of a SAW-based microaccelerometer with an original triangular-shaped console-type sensing element. Our design is particularly optimized to increase the robustness against positioning errors of the SAW resonators on the opposite sides of the console. We also describe the results of computer simulations and laboratory tests that are in a perfect agreement with each other and present the sensitivity characteristics of a manufactured experimental design device.

View Article and Find Full Text PDF

Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets.

View Article and Find Full Text PDF

Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, , and , were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China.

View Article and Find Full Text PDF

In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter.

View Article and Find Full Text PDF

Specially designed porphyrin-fullerene dyads have been synthesized to verify literature predictions based on quantum chemistry calculations that certain porphyrin-fullerene dyads are able to self-arrange into specific structures providing channels for charge transport in a bulk mass of organic compound. According to AFM and SEM data, the newly synthesized compounds were indeed prone to some kind of self-arrangement, although to a lesser degree than was expected. A dispersion corrected DFT study of the molecular non-covalent interactions performed at the DFT-D3 (B3LYP, 6-31G*) level of theory showed that the least energy corresponded to head-to-head dimers, with close contacts of porphyrin-porphyrin and fullerene-fullerene fragments, thus providing a unit building block of the channel for charge transport.

View Article and Find Full Text PDF

For many decades, IR and FT-IR spectroscopy has generated valuable information about different functional groups in zeolites, metal-organic frameworks (MOFs), and other porous materials. However, this technique cannot distinguish between functional groups in different local environments. Our study demonstrates that this limitation could be overcome by using Fourier self-deconvolution of infrared spectra (FSD-IR).

View Article and Find Full Text PDF

The conversion of light alkanes to high value aromatics proceeds with a high selectivity over bifunctional, gallium (Ga) containing zeolite catalysts. It is generally agreed that Ga sites are involved in dehydrogenation reaction steps and that the zeolite acid sites catalyze cracking, oligomerization, and cyclization reactions. However, understanding of the precise roles of the acid and Ga sites in the reaction mechanisms is significantly hampered since the number of these sites in working catalysts is not known.

View Article and Find Full Text PDF