Integrated pest management (IPM) is a sustainable approach for minimizing the negative impacts of pests on crops while reducing reliance on synthetic pesticides. This study was conducted in Kwara State Nigeria in 2023, to investigate the effects of implementation of IPM practices on the occurrence of pesticide residues in okra cultivated by the farmers in Kwara State, Nigeria, and identify the factors affecting the use of IPM practices for pest control in okra production. A sample of 245 okra farmers was selected across 4 agricultural zones of Kwara State using a multistage sampling technique.
View Article and Find Full Text PDFThe use of pesticides has led to environmental pollution and posed a global health risk, since they remain as residues on foods. Beans one of the most widely cultivated crop in Africa, and susceptible to attack by insects both on field and during storage, leading to the application of pesticides to control pests' infestation. However, misuse of these chemicals by farmers on beans has resulted in the rejection of beans exported to European countries, due to the presence of pesticide residues at concentrations higher than the maximum residues levels (MRLs).
View Article and Find Full Text PDFThis study addressed the challenge of accurately detecting mycotoxins in herbs and spices, which have gained popularity as alternative medicines but pose health risks due to potential contamination. We used a competitive direct ELISA kit (Art No. 8610), Veratox for Ochratoxin, to quantify Ochratoxin A in the herb and spice samples.
View Article and Find Full Text PDFFruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment.
View Article and Find Full Text PDFThis review presents the application of carbon nanotubes as sorbent materials in the analysis of pesticide residues in fruits and vegetables. The advantages, limitations, and challenges of carbon nanotubes, with respect to their use in analytical chemistry, are presented. The efficiency of their application as extraction sorbent materials (in terms of LOD, LOQ, linearity, relative recovery, and RSD) in SPE, solid-phase microextraction, multi-plug filtration clean-up, matrix solid-phase dispersion, and the quick, easy, cheap, effective, rugged and safe method is reported.
View Article and Find Full Text PDFSample preparation has been identified as the most important step in analytical chemistry and has been tagged as the bottleneck of analytical methodology. The current trend is aimed at developing cost-effective, miniaturized, simplified, and environmentally friendly sample preparation techniques. The fundamentals and applications of multivariate statistical techniques for the optimization of microextraction sample preparation and chromatographic analysis of pesticide residues are described in this review.
View Article and Find Full Text PDFAn HS-SPME method was developed using multivariate experimental designs, which was conducted in two stages. The significance of each factor was estimated using the Plackett-Burman (P-B) design, for the identification of significant factors, followed by the optimization of the significant factors using central composite design (CCD). The multivariate experiment involved the use of Minitab® statistical software for the generation of a 2(7-4) P-B design and CCD matrices.
View Article and Find Full Text PDFSolid-phase microextraction (SPME) is a solventless sample preparation method that combines sample preparation, isolation, concentration, and enrichment into one step. A simple and effective method coupling headspace-SPME to GC/MS was developed for the analysis of chlorpyrifos, fenitrothion, endosulfan I, and endosulfan II pesticide residues in cocoa powder. In this study, multivariate strategy was used to determine the significance of the factors affecting the SPME of the pesticides using a Plackett-Burman design, and the significant factors were optimized using central composite design.
View Article and Find Full Text PDFSolid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs.
View Article and Find Full Text PDFThe sample preparation step has been identified as the bottleneck of analytical methodology in chemical analysis. Therefore, there is need for the development of cost-effective, easy to operate, and environmentally friendly miniaturized sample preparation technique. The microextraction techniques combine extraction, isolation, concentration, and introduction of analytes into analytical instrument, to a single and uninterrupted step, and improve sample throughput.
View Article and Find Full Text PDFThis paper reviews the application of various modes of solid-phase microextraction (SPME) for the analysis of pesticide residues in fruits and vegetables. SPME is a simple extraction technique that eliminates the use of solvent, and it is applied for the analysis of both volatile and nonvolatile pesticides. SPME has been successfully coupled to both GC and LC.
View Article and Find Full Text PDF