Publications by authors named "Luke Vierthaler"

Objective: Our objective was to analyze periprocedural and 1-year outcomes of peripheral endovascular intervention (PVI) for critical limb ischemia (CLI).

Methods: We reviewed 1244 patients undergoing 1414 PVIs for CLI (rest pain, 29%; tissue loss, 71%) within the Vascular Study Group of New England (VSGNE) from January 2010 to December 2011. Overall survival (OS), amputation-free survival (AFS), and freedom from major amputation at 1 year were analyzed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Fibroblast growth factor 23 (FGF23) is a phosphaturic factor that suppresses both sodium-dependent phosphate transport and production of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] in the proximal tubule. In vitro studies suggest that FGFR3 is the physiologically relevant receptor for FGF23 in the kidney, but this has not been established in vivo. Here, immunohistochemical analysis of the mouse kidney revealed that the proximal tubule expresses FGF receptor 3 (FGFR3) but not FGFR1, FGFR2, or FGFR4.

View Article and Find Full Text PDF

X-linked hypophosphatemia (XLH) is characterized by hypophosphatemia and impaired mineralization caused by mutations of the PHEX endopeptidase (phosphate-regulating gene with homologies to endopeptidases on the X chromosome), which leads to the overproduction of the phosphaturic fibroblast growth factor 23 (FGF23) in osteocytes. The mechanism whereby PHEX mutations increase FGF23 expression and impair mineralization is uncertain. Either an intrinsic osteocyte abnormality or unidentified PHEX substrates could stimulate FGF23 in XLH.

View Article and Find Full Text PDF

Inactivating PHEX (phosphate regulating gene with homologies to endopeptidases on the X chromosome) mutations cause X-linked hypophosphatemia in humans and mice (Hyp) through overproduction of fibroblast growth factor 23 (FGF23) a phosphaturic factor, by osteocytes. Matrix extracellular phosphoglycoprotein (MEPE) is also elevated in Hyp and other hypophosphatemic disorders. In addition, the administration of an ASARM (acidic serine-aspartate rich MEPE-associated motif) peptide derived from MEPE causes phosphaturia and inhibits bone mineralization in mice, suggesting that MEPE also plays a role in phosphate homeostasis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session74cqguhq1pd4bc0at8s1uo8vajcl5tm1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once