Background: Alzheimer's disease is a multifactorial disorder that may be diagnosed earlier using a combination of tests rather than any single test. Search algorithms and optimization techniques in combination with model evaluation techniques have been used previously to perform the selection of suitable feature sets. Previously we successfully applied GA with LR to neuropsychological data contained within the The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, to select cognitive tests for prediction of progression of AD.
View Article and Find Full Text PDFBackground: Assessment of risk and early diagnosis of Alzheimer's disease (AD) is a key to its prevention or slowing the progression of the disease. Previous research on risk factors for AD typically utilizes statistical comparison tests or stepwise selection with regression models. Outcomes of these methods tend to emphasize single risk factors rather than a combination of risk factors.
View Article and Find Full Text PDF