Publications by authors named "Luke Remage-Healey"

Sensory cues such as vocalizations contain important social information. Processing social features of vocalizations (e.g.

View Article and Find Full Text PDF

Early-life experiences with signals used in communication are instrumental in shaping an animal's social interactions. In songbirds, which use vocalizations for guiding social interactions and mate choice, recent studies show that sensory effects on development occur earlier than previously expected, even in embryos and nestlings. Here, we explored the neural dynamics underlying experience-dependent song categorization in young birds prior to the traditionally studied sensitive period of vocal learning that begins around 3 weeks post-hatch.

View Article and Find Full Text PDF

Motivation to seek social interactions is inherent to all social species. For instance, even with risk of disease transmission in a recent pandemic, humans sought out frequent in-person social interactions. In other social animals, socialization can be prioritized even over water or food consumption.

View Article and Find Full Text PDF

Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments.

View Article and Find Full Text PDF

Jumping spiders have extraordinary vision. Using multiple, specialized eyes, these spiders selectively gather and integrate disparate streams of information about motion, color, and spatial detail. The saccadic movements of a forward-facing pair of eyes allow spiders to inspect their surroundings and identify objects.

View Article and Find Full Text PDF

Unlabelled: Social encounters rely on sensory cues that carry nuanced information to guide social decision-making. While high-level features of social signals are processed in the telencephalic pallium, nuclei controlling social behaviors, called the social behavior network (SBN), reside mainly in the diencephalon. Although it is well known how mammalian olfactory pallium interfaces with the SBN, there is little information for how pallial processing of other sensory modalities can modulate SBN circuits.

View Article and Find Full Text PDF

The zebra finch (Taeniopygia guttata), a representative oscine songbird species, has been widely studied to investigate behavioral neuroscience, most notably the neurobiological basis of vocal learning, a rare trait shared in only a few animal groups including humans. In 2019, an updated zebra finch genome annotation (bTaeGut1_v1.p) was released from the Ensembl database and is substantially more comprehensive than the first version published in 2010.

View Article and Find Full Text PDF

Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons.

View Article and Find Full Text PDF

Distinguishing between regular and irregular heartbeats, conversing with speakers of different accents, and tuning a guitar-all rely on some form of auditory learning. What drives these experience-dependent changes? A growing body of evidence suggests an important role for non-sensory influences, including reward, task engagement, and social or linguistic context. This review is a collection of contributions that highlight how these non-sensory factors shape auditory plasticity and learning at the molecular, physiological, and behavioral level.

View Article and Find Full Text PDF

This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases.

View Article and Find Full Text PDF

Songbirds have emerged as exceptional research subjects for helping us appreciate and understand estrogen synthesis and function in brain. In the context of recognizing the vertebrate-wide importance of brain aromatase expression, in this review we highlight where we believe studies of songbirds have provided clarification and conceptual insight. We follow by focusing on more recent studies of aromatase and neuroestrogen function in the hippocampus and the pallial auditory processing region NCM of songbirds.

View Article and Find Full Text PDF

Estrogens support major brain functions including cognition, reproduction, neuroprotection and sensory processing. Neuroestrogens are synthesized within some brain areas by the enzyme aromatase and can rapidly modulate local circuit functions, yet the cellular physiology and sensory-response profiles of aromatase neurons are essentially unknown. In songbirds, social and acoustic stimuli drive neuroestrogen elevations in the auditory forebrain caudomedial nidopallium (NCM).

View Article and Find Full Text PDF

Vocal learning species must form and extensively hone associations between sounds and social contingencies. In songbirds, dopamine signaling guides song motor production, variability, and motivation, but it is unclear how dopamine regulates fundamental auditory associations for learning new sounds. We hypothesized that dopamine regulates learning in the auditory pallium, in part by interacting with local neuroestradiol signaling.

View Article and Find Full Text PDF

In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing.

View Article and Find Full Text PDF

Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance.

View Article and Find Full Text PDF

Encoding of conspecific signals during development can reinforce species barriers as well as set the stage for learning and production of species-typical vocalizations. In altricial songbirds, the development of the auditory system is not complete at hatching, so it is unknown the degree to which recently hatched young can process auditory signals like birdsong. We measured in vivo extracellular responses to song stimuli in a zebra finch (Taeniopygia guttata) secondary auditory forebrain region, the caudomedial nidopallium (NCM).

View Article and Find Full Text PDF

Birdsong learning, like human speech, depends on the early memorization of auditory models, yet how initial auditory experiences are formed and consolidated is unclear. In songbirds, a putative cortical locus is the caudomedial nidopallium (NCM), and one mechanism to facilitate auditory consolidation is 17β-estradiol (E2), which is associated with human speech-language development, and is abundant in both NCM and human temporal cortex. Circulating and NCM E2 levels are dynamic during learning, suggesting E2's involvement in encoding recent auditory experiences.

View Article and Find Full Text PDF

Decades of work have established the brain as a source of steroid hormones, termed 'neurosteroids'. The neurosteroid neuroestradiol is produced in discrete brain areas and influences cognition, sensory processing, reproduction, neurotransmission, and disease. A prevailing research focus on neuroestradiol has essentially ignored whether its immediate synthesis precursor - the androgen testosterone - is also dynamically regulated within the brain.

View Article and Find Full Text PDF

Animals continually assess their environment for cues associated with threats, competitors, allies, mates or prey, and experience is crucial for those associations. The auditory cortex is important for these computations to enable valence assignment and associative learning. The caudomedial nidopallium (NCM) is part of the songbird auditory association cortex and it is implicated in juvenile song learning, song memorization, and song perception.

View Article and Find Full Text PDF

Neuron-derived estrogens are synthesized by aromatase and act through membrane receptors to modulate neuronal physiology. In many systems, long-lasting hormone treatments can alter sensory-evoked neuronal activation. However, the significance of acute neuroestrogen production is less understood.

View Article and Find Full Text PDF

Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is often described as promoting actions such as reward seeking, whereas ventral mPFC, typically infralimbic cortex, is thought to promote response inhibition. However, both dorsal and ventral mPFC are necessary for both expression and suppression of different behaviors, and each region may contribute to different functions depending on the specifics of the behavior tested. To better understand the roles of dorsal and ventral mPFC in motivated behavior we pharmacologically inactivated each area during operant fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced reinstatement, and progressive ratio (PR) sucrose seeking in male Long-Evans rats.

View Article and Find Full Text PDF

Breast cancer patients using aromatase inhibitors (AIs) as an adjuvant therapy often report side effects, including hot flashes, mood changes, and cognitive impairment. Despite long-term use in humans, little is known about the effects of continuous AI administration on the brain and cognition. We used a primate model of human cognitive aging, the common marmoset, to examine the effects of a 4-week daily administration of the AI letrozole (20 μg, p.

View Article and Find Full Text PDF

Contribution to Special Issue on Fast effects of steroids. Steroid hormones, such as estrogens, were once thought to be exclusively synthesized in the ovaries and enact transcriptional changes over the course of hours to days. However, estrogens are also locally synthesized within neural circuits, wherein they rapidly (within minutes) modulate a range of behaviors, including spatial cognition and communication.

View Article and Find Full Text PDF

Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown.

View Article and Find Full Text PDF