Single cell sequencing technologies have rapidly advanced in the last decade and are increasingly applied to gain unprecedented insights by deconstructing complex biology to its fundamental unit, the individual cell. First developed for measurement of gene expression, single cell sequencing approaches have evolved to allow simultaneous profiling of multiple additional features, including chromatin accessibility within the nucleus and protein expression at the cell surface. These multi-omic approaches can now further be applied to cells , capturing the spatial context within which their biology occurs.
View Article and Find Full Text PDFIgA nephropathy (IgAN) is the most prevalent cause of primary glomerular disease worldwide, and the cytokine A PRoliferation-Inducing Ligand (APRIL) is emerging as a key player in IgAN pathogenesis and disease progression. For a panel of anti-human APRIL antibodies with known antagonistic activity, we sought to define their structural mode of engagement to understand molecular mechanisms of action and aid rational antibody engineering. Reliable computational prediction of antibody-antigen complexes remains challenging, and experimental methods such as X-ray co-crystallography and cryoEM have considerable technical, resource, and throughput barriers.
View Article and Find Full Text PDFDengue virus (DENV) infection imposes enormous health and economic burden worldwide with no approved treatment. Several small molecules, including lovastatin, celgosivir, balapiravir and chloroquine have been tested for potential anti-dengue activity in clinical trials; none of these have demonstrated a protective effect. Recently, based on identification and characterization of cross-serotype neutralizing antibodies, there is increasing attention on the potential for dengue immunotherapy.
View Article and Find Full Text PDFDespite useful in vivo activity, no therapeutic against dengue virus (DENV) has demonstrated efficacy in clinical trials. Herein, we explored dosing and virological endpoints to guide the design of human trials of VIS513, a pan-serotype anti-DENV IgG1 antibody, in non-human primates (NHPs). Dosing VIS513 pre- or post-peak viremia in NHPs neutralized infectious DENV although RNAemia remained detectable post-treatment; differential interaction of human IgGs with macaque Fc-gamma receptors may delay clearance of neutralized DENV.
View Article and Find Full Text PDFDengue is the most common vector-borne viral disease, causing nearly 400 million infections yearly. Currently there are no approved therapies. Antibody epitopes that elicit weak humoral responses may not be accessible by conventional B cell panning methods.
View Article and Find Full Text PDFDengue is the most important arthropod-borne viral disease in humans, with an estimated 3.6 billion people at risk for infection and more than 200 million infections per year. Identification of the cellular receptors for dengue virus (DV), the causative agent of dengue, is important toward understanding the pathogenesis of the disease.
View Article and Find Full Text PDFAffinity improvement of proteins, including antibodies, by computational chemistry broadly relies on physics-based energy functions coupled with refinement. However, achieving significant enhancement of binding affinity (>10-fold) remains a challenging exercise, particularly for cross-reactive antibodies. We describe here an empirical approach that captures key physicochemical features common to antigen-antibody interfaces to predict protein-protein interaction and mutations that confer increased affinity.
View Article and Find Full Text PDFGlycans, or complex carbohydrates, are a ubiquitous class of biological molecule which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships.
View Article and Find Full Text PDFIn mammals, glucose-regulated gene expression has been best characterized in the liver, where increased glucose metabolism induces transcription of genes encoding enzymes involved in de novo lipogenesis. ChREBP and Mlx dimerize and function together as a glucose-responsive transcription factor to regulate target genes, such as liver-type pyruvate kinase, acetyl-CoA carboxylase 1, and fatty acid synthase. To identify additional glucose-responsive genes in the liver, we used microarray analysis to compare gene expression patterns in low and high glucose conditions in hepatocytes.
View Article and Find Full Text PDF