Ruthenium complexes have emerged as a promising class of compounds for use as photosensitizers (PSs) in photodynamic therapy (PDT) due to their attractive photophysical properties and relative ease of chemical alteration. While promising, they generally are not inherently targeting to disease sites and may therefore be prone to side effects and require higher doses. Aptamers are short oligonucleotides that bind specific targets with high affinity.
View Article and Find Full Text PDFWhile Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications. In medicine, antisense oligonucleotides (ASOs), siRNAs, and therapeutic aptamers are explored as potent targeted treatment and diagnostic modalities, while in the technological field oligonucleotides have found use in new materials, catalysis, and data storage. The use of natural oligonucleotides limits the possible chemical functionality of resulting technologies while inherent shortcomings, such as susceptibility to nuclease degradation, provide obstacles to their application.
View Article and Find Full Text PDFRuthenium complexes have attracted a lot of attention as potential photosensitizers (PSs) for photodynamic therapy (PDT). However, some of these PSs are unsuitable for PDT applications due to their low cellular uptake, which is possibly the consequence of their relatively low degree of lipophilicity, which prevents them from penetrating into tumor cells. Here, we report the simple one-pot synthesis of ruthenium-containing nanoconjugates from a non-cell-penetrating, non-phototoxic ruthenium(ii) polypyridyl complex (), by a drug-initiated ring-opening polymerization of lactide through the formation of a zinc initiator.
View Article and Find Full Text PDFA ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(iii), Nd(iii), Yb(iii)] or another d-block ion [Zn(ii), Mn(ii)]. When M = Gd(iii) or Mn(ii) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(ii) unit provides the possibility of two different types of imaging modality in a single molecular probe.
View Article and Find Full Text PDFRNA is often considered as being the vector for the transmission of genetic information from DNA to the protein synthesis machinery. However, besides translation RNA participates in a broad variety of fundamental biological roles such as gene expression and regulation, protein synthesis, and even catalysis of chemical reactions. This variety of function combined with intricate three-dimensional structures and the discovery of over 100 chemical modifications in natural RNAs require chemical methods for the modification of RNAs in order to investigate their mechanism, location, and exact biological roles.
View Article and Find Full Text PDFMacromolecules are potentially useful delivery systems for cancer drugs, as their size allows them to utilize the enhanced permeability and retention effect (EPR), which facilitates selective delivery to (and retention within) tumors. In addition, macromolecular delivery systems can prolong circulation times as well as protect and solubilize toxic and hydrophobic drug moieties. Overall, these properties and abilities can result in an enhanced therapeutic effect.
View Article and Find Full Text PDFThe series of complexes [Os(bpy)(pytz) ][PF] (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed MLCT transitions.
View Article and Find Full Text PDFA novel diiridium complex [(N^C^N)Ir(bis-N^C)Ir(N^C^N)Cl]PF (N^C^N = 2-[3--butyl-5-(pyridin-2-yl)phenyl]pyridine; bis-N^C = 3,6-bis(4--butylphenyl)pyridazine) was designed, synthesised and characterised. The key feature of the complex is the bridging pyridazine ligand which brings two cyclometallated Ir(iii) metal centres close together so that Cl also acts as a bridging ligand leading to a cationic complex. The ionic nature of the complex offers a possibility of improving solubility in water.
View Article and Find Full Text PDFWe describe an Ir(III)-based small-molecule, multimodal probe for use in both light and electron microscopy. The direct correlation of data between light- and electron-microscopy-based imaging to investigate cellular processes at the ultrastructure level is a current challenge, requiring both dyes that must be brightly emissive for luminescence imaging and scatter electrons to give contrast for electron microscopy, at a single working concentration suitable for both methods. Here we describe the use of Ir(III) complexes as probes that provide excellent image contrast and quality for both luminescence and electron microscopy imaging, at the same working concentration.
View Article and Find Full Text PDFUsing a new mononuclear "building block," for the first time, a dinuclear Ru (dppn) complex and a heteroleptic system containing both Ru (dppz) and Ru (dppn) moieties are reported. The complexes, including the mixed dppz/dppn system, are O sensitizers. However, unlike the homoleptic dppn systems, the mixed dppz/dppn complex also displays a luminescence "switch on" DNA light-switch effect.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) uses photosensitizers (PS) which only become cytotoxic upon light-irradiation. Transition-metal complexes are highly promising PS due to long excited-state lifetimes, and high photo-stabilities. However, these complexes usually absorb higher-energy UV/Vis light, whereas the optimal tissue transparency is in the lower-energy NIR region.
View Article and Find Full Text PDFThe complex [Os(btzpy)₂][PF₆]₂ (, btzpy = 2,6-bis(1-phenyl-1,2,3-triazol-4-yl)pyridine) has been prepared and characterised. Complex exhibits phosphorescence (λ = 595 nm, τ = 937 ns, φ = 9.3% in degassed acetonitrile) in contrast to its known ruthenium(II) analogue, which is non-emissive at room temperature.
View Article and Find Full Text PDFLuminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented.
View Article and Find Full Text PDFAlthough metal-ion-directed self-assembly has been widely used to construct a vast number of macrocycles and cages, it is only recently that the biological properties of these systems have begun to be explored. However, up until now, none of these studies have involved intrinsically photoexcitable self-assembled structures. Herein we report the first metallomacrocycle that functions as an intracellular singlet oxygen sensitizer.
View Article and Find Full Text PDFPhotodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light.
View Article and Find Full Text PDFA new class of substituted porphyrins has been developed in which a different number of cyclometalated Pt(II) C^N^N acetylides and polyethylene glycol (PEG) chains are attached to the meso positions of the porphyrin core, which are meant for photophysical, electrochemical, and in vitro light-induced singlet oxygen ((1)O2) generation studies. All of these Zn(II) porphyrin-Pt(II) C^N^N acetylide conjugates show moderate to high (ΦΔ =0.55 to 0.
View Article and Find Full Text PDFThe DNA binding and cellular localization properties of a new luminescent heterobimetallic Ir(III) Ru(II) tetrapyridophenazine complex are reported. Surprisingly, in standard cell media, in which its tetracationic, isostructural Ru(II) Ru(II) analogue is localized in the nucleus, the new tricationic complex is poorly taken up by live cells and demonstrates no nuclear staining. Consequent cell-free studies reveal that the Ir(III) Ru(II) complex binds bovine serum albumin, BSA, in Sudlow's Site I with a similar increase in emission and binding affinity to that observed with DNA.
View Article and Find Full Text PDF