Publications by authors named "Luke Krebs"

The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice.

View Article and Find Full Text PDF

The Snail gene family encodes DNA-binding zinc finger proteins that function as transcriptional repressors. While the Snai1 and Snai2 genes are required for normal development in mice, Snai3 mutant mice exhibit no obvious abnormalities. The Snai3 gene is expressed at high levels in skeletal muscle.

View Article and Find Full Text PDF

The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes.

View Article and Find Full Text PDF

The Notch-regulated ankyrin repeat protein (Nrarp) is a component of a negative feedback system that attenuates Notch pathway-mediated signaling. In vertebrates, the timing and spacing of formation of the mesodermal somites are controlled by a molecular oscillator termed the segmentation clock. Somites are also patterned along the rostral-caudal axis of the embryo.

View Article and Find Full Text PDF

The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus.

View Article and Find Full Text PDF

The Notch signaling pathway is an evolutionarily-conserved intercellular signaling mechanism, and mutations in its components disrupt embryonic development in many organisms and cause inherited diseases in humans. The Jagged2 (Jag2) gene, which encodes a ligand for Notch pathway receptors, is required for craniofacial, limb, and T cell development. Mice homozygous for a Jag2 null allele die at birth from cleft palate, precluding study of Jag2 function in postnatal and adult mice.

View Article and Find Full Text PDF

Notch signaling is essential for embryonic vascular development in mammals and other vertebrates. Here we show that mouse embryos with conditional activation of the Notch1 gene in endothelial cells (Notch1 gain of function embryos) exhibit defects in vascular remodeling increased diameter of the dorsal aortae, and form arteriovenous malformations. Conversely, embryos with either constitutive or endothelial cell-specific Notch1 gene deletion also have vascular defects, but exhibit decreased diameter of the dorsal aortae and form arteriovenous malformations distinctly different from the Notch1 gain of function mutants.

View Article and Find Full Text PDF

Background: Notch1 regulates binary cell fate determination and is critical for angiogenesis and cardiovascular development. However, the pathophysiological role of Notch1 in the postnatal period is not known. We hypothesize that Notch1 signaling in vascular smooth muscle cells (SMCs) may contribute to neointimal formation after vascular injury.

View Article and Find Full Text PDF

Formation of a fully functional artery proceeds through a multistep process. Here we show that Notch3 is required to generate functional arteries in mice by regulating arterial differentiation and maturation of vascular smooth muscle cells (vSMC). In adult Notch3-/- mice distal arteries exhibit structural defects and arterial myogenic responses are defective.

View Article and Find Full Text PDF

The Notch signaling pathway is essential for embryonic vascular development in vertebrates. Here we show that mouse embryos heterozygous for a targeted mutation in the gene encoding the DLL4 ligand exhibit haploinsufficient lethality because of defects in vascular remodeling. We also describe vascular defects in embryos homozygous for a mutation in the Rbpsuh gene, which encodes the primary transcriptional mediator of Notch signaling.

View Article and Find Full Text PDF

The Notch signaling pathway is an evolutionarily conserved signaling mechanism and mutations in its components disrupt cell fate specification and embryonic development in many organisms. To analyze the in vivo role of the Notch3 gene in mice, we created a deletion allele by gene targeting. Embryos homozygous for this mutation developed normally and homozygous mutant adults were viable and fertile.

View Article and Find Full Text PDF

Generation of left-right asymmetry is an integral part of the establishment of the vertebrate body plan. Here we show that the Notch signaling pathway plays a primary role in the establishment of left-right asymmetry in mice by directly regulating expression of the Nodal gene. Embryos mutant for the Notch ligand Dll1 or doubly mutant for the Notch1 and Notch2 receptors exhibit multiple defects in left-right asymmetry.

View Article and Find Full Text PDF