This paper applies the Bayesian Model Averaging statistical ensemble technique to estimate small molecule solvation free energies. There is a wide range of methods available for predicting solvation free energies, ranging from empirical statistical models to ab initio quantum mechanical approaches. Each of these methods is based on a set of conceptual assumptions that can affect predictive accuracy and transferability.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
March 2011
Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex data sets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates nonparametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2008
The visualization and analysis of AMR-based simulations is integral to the process of obtaining new insight in scientific research. We present a new method for performing query-driven visualization and analysis on AMR data, with specific emphasis on time-varying AMR data. Our work introduces a new method that directly addresses the dynamic spatial and temporal properties of AMR grids that challenge many existing visualization techniques.
View Article and Find Full Text PDF