Publications by authors named "Luke G Bennetts"

The marginal ice zone (MIZ) is the dynamic interface between the open ocean and sea ice-covered ocean. It is characterized by interactions between surface gravity waves and granular ice covers consisting of relatively small, thin chunks of sea ice known as floes. This structure gives the MIZ markedly different properties to the thicker, quasi-continuous ice cover of the inner pack that waves do not reach, strongly influencing various atmosphere-ocean fluxes, especially the heat flux.

View Article and Find Full Text PDF

The marginal ice zone is the dynamic interface between the open ocean and consolidated inner pack ice. Surface gravity waves regulate marginal ice zone extent and properties, and, hence, atmosphere-ocean fluxes and ice advance/retreat. Over the past decade, seminal experimental campaigns have generated much needed measurements of wave evolution in the marginal ice zone, which, notwithstanding the prominent knowledge gaps that remain, are underpinning major advances in understanding the region's role in the climate system.

View Article and Find Full Text PDF

Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (the collapse of the Larsen A and B and Wilkins ice shelves), the increased seasonal absence of a protective sea ice buffer enabled increased flexure of vulnerable outer ice shelf margins by ocean swells that probably weakened them to the point of calving.

View Article and Find Full Text PDF