Publications by authors named "Luke F S BEEBE"

We report here the establishment and characterization of putative porcine embryonic stem cell (ESC) lines derived from somatic cell nuclear transfer embryos (NT-ESCs). These cells had a similar morphology to that described previously by us for ESCs derived from in vitro produced embryos, namely, a polygonal shape, a relatively small (10-15 μm) diameter, a small cytoplasmic/nuclear ratio, a single nucleus with multiple nucleoli and multiple lipid inclusions in the cytoplasm. NT-ESCs could be passaged at least 15 times and vitrified repeatedly without changes in their morphology, karyotype, or Oct-4 and Nanog expression.

View Article and Find Full Text PDF

We have developed a new method for the isolation of porcine embryonic stem cells (ESCs) from in vivo-derived and in vitro-produced embryos. Here we describe the isolation and characterization of several ESC lines established using this method. Cells from these lines were passaged up to 14 times, during which they were repeatedly cryopreserved.

View Article and Find Full Text PDF

In the present study we examined the effect of culture media and protein source on the formation of pluripotent primary outgrowths from in vitro produced and in vivo derived porcine embryos as the first step towards the isolation of embryonic stem cells (ESCs). To do this we compared high glucose Dulbeccos Modified Eagles Medium (DMEM) with Minimal Essential Alpha Medium (αMEM) both supplemented with fetal bovine serum (FBS) or serum replacement (SR) in a 2 × 2 factorial design. Culture in DMEM or αMEM supplemented with 10% SR resulted in the establishment of homogenous populations of cells which expressed Oct 4 and Nanog.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) is a useful technique for the production of transgenic pigs that can be used for biomedical research. However, the efficiency of SCNT in pigs is low. In this study, we examined the effect of two postactivation treatments, cytochalasin B (CB) and trichostatin A (TSA), on the in vitro development of porcine SCNT embryos.

View Article and Find Full Text PDF

The aims of this study were to investigate improvements to the pig preimplantation embryo culture system using in vitro produced embryos. For experiment 1, the optimum time to change the medium from NCSU23 containing 0.6 mM glucose, 0.

View Article and Find Full Text PDF

We report here our experience regarding the production of double or homozygous Gal knockout (Gal KO) pigs by breeding and somatic cell nuclear transfer (SCNT). Large White x Landrace female heterozygous Gal KO founders produced using SCNT were mated with Hampshire or Duroc males to produce a F1 generation. F1 heterozygous pigs were then bred to half-sibs to produce a F2 generation which contained Gal KO pigs.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) isolated from bone marrow were used to examine the hypothesis that a less differentiated cell type could increase adult somatic cell nuclear transfer (SCNT) efficiencies in the pig. SCNT embryos were produced using a fusion before activation protocol described previously and the rate at which these developed to the blastocyst stage compared with that using fibroblasts obtained from ear tissue from the same animal. The use of bone marrow MSCs did not increase cleavage rates compared with adult fibroblasts.

View Article and Find Full Text PDF