Cyanobacterial mats are laminated microbial ecosystems which occur in highly diverse environments and which may provide a possible model for early life on Earth. Their ability to produce hydrogen also makes them of interest from a biotechnological and bioenergy perspective. Samples of an intertidal microbial mat from the Elkhorn Slough estuary in Monterey Bay, California, were transplanted to a greenhouse at NASA Ames Research Center to study a 24-h diel cycle, in the presence or absence of molybdate (which inhibits biohydrogen consumption by sulfate reducers).
View Article and Find Full Text PDFPhotosynthetic microbial mats are complex, stratified ecosystems in which high rates of primary production create a demand for nitrogen, met partially by N₂ fixation. Dinitrogenase reductase (nifH) genes and transcripts from Cyanobacteria and heterotrophic bacteria (for example, Deltaproteobacteria) were detected in these mats, yet their contribution to N2 fixation is poorly understood. We used a combined approach of manipulation experiments with inhibitors, nifH sequencing and single-cell isotope analysis to investigate the active diazotrophic community in intertidal microbial mats at Laguna Ojo de Liebre near Guerrero Negro, Mexico.
View Article and Find Full Text PDFPast studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)-were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes.
View Article and Find Full Text PDFThe nonheterocystous filamentous cyanobacterium strain ESFC-1 has recently been isolated from a marine microbial mat system, where it was identified as belonging to a recently discovered lineage of active nitrogen-fixing microorganisms. Here, we report the draft genome sequence of this isolate. The assembly consists of 3 scaffolds and contains 5,632,035 bp with a GC content of 46.
View Article and Find Full Text PDFPhotosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA.
View Article and Find Full Text PDFN(2) fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N(2) and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses.
View Article and Find Full Text PDFHydrogen (H(2)) release from photosynthetic microbial mats has contributed to the chemical evolution of Earth and could potentially be a source of renewable H(2) in the future. However, the taxonomy of H(2)-producing microorganisms (hydrogenogens) in these mats has not been previously determined. With combined biogeochemical and molecular studies of microbial mats collected from Elkhorn Slough, Monterey Bay, California, we characterized the mechanisms of H(2) production and identified a dominant hydrogenogen.
View Article and Find Full Text PDFWe developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × -2 × coverage.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2009
The microorganisms responsible for anaerobic oxidation of methane (AOM) coupled to denitrification have not been clearly elucidated. Three recent publications suggested it can be achieved by a denitrifying bacterium with or without the involvement of anaerobic methanotrophic archaea. A key factor limiting the progress in this research field is the shortage of enrichment cultures performing denitrifying anaerobic methane oxidation (DAMO).
View Article and Find Full Text PDFA glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus.
View Article and Find Full Text PDFA glycogen nonpolyphosphate-accumulating organism (GAO) enrichment culture dominated by the Alphaproteobacteria cluster 1 Defluviicoccus was investigated to determine the metabolic pathways involved in the anaerobic formation of polyhydroxyalkanoates, carbon storage polymers important for the proliferation of microorganisms in enhanced biological phosphorus removal processes. FISH-microautoradiography and post-FISH fluorescent chemical staining confirmed acetate assimilation as polyhydroxyalkanoates in cluster 1 Defluviicoccus under anaerobic conditions. Chemical inhibition of glycolysis using iodoacetate, and of isocitrate lyase by 3-nitropropionate and itaconate, indicated that carbon is likely to be channelled through both glycolysis and the glyoxylate cycle in cluster 1 Defluviicoccus.
View Article and Find Full Text PDFEnhanced biological phosphorus removal (EBPR) communities protect waterways from nutrient pollution and enrich microorganisms capable of assimilating acetate as polyhydroxyalkanoate (PHA) under anaerobic conditions. Accumulibacter, an important uncultured polyphosphate-accumulating organism (PAO) enriched in EBPR, was investigated to determine the central metabolic pathways responsible for producing PHA. Acetate uptake and assimilation to PHA in Accumulibacter was confirmed using fluorescence in situ hybridization (FISH)-microautoradiography and post-FISH chemical staining.
View Article and Find Full Text PDFMost of our understanding of the physiology of microorganisms is the result of investigations in pure culture. However, in order to understand complex environmental processes, there is a need to investigate mixed microbial communities. This is true for enhanced biological phosphorus removal (EBPR), an environmental process that results in the enrichment of the polyphosphate-accumulating organism Accumulibacter spp.
View Article and Find Full Text PDFThe activity of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment plants has been proposed as one cause of deterioration of EBPR. Putative GAOs from the Alphaproteobacteria, Defluviicoccus spp. (including D.
View Article and Find Full Text PDF