Publications by authors named "Luke A Holmes"

Article Synopsis
  • * Aquatic embryos serve as ideal models for phenomics because they are diverse, ecologically relevant, and undergo significant changes, making them suitable for in-depth study.
  • * The LabEmbryoCam is a versatile, automated phenotyping platform designed for timelapse imaging of aquatic embryos, incorporating advanced technologies like 3D printing and motion systems for detailed analysis such as heart rate and motion tracking.
View Article and Find Full Text PDF

Offshore ocean aquaculture is expanding globally to meet the growing demand for sustainable food production. At the United Kingdom's largest longline mussel farm, we assessed the potential for the farm to improve the habitat suitability for commercially important crustaceans. Modelled distribution patterns (GAM & GLM) predicted the low complexity seabed beneath the mussel farm was 34-94 % less suitable for European lobster (Homarus gammarus) and brown crab (Cancer pagurus) than nearby rocky reefs.

View Article and Find Full Text PDF

Phenomics offers technological advances for high-dimensional phenotyping, facilitating rapid, high-throughput assessment of physiological performance and has proven invaluable in global research challenges including drug discovery and food security. However, this rapidly growing discipline has remained largely inaccessible to the increasingly urgent challenge of assessing organismal functional sensitivity to global change drivers. Here, we investigate the response of an ecologically important marine invertebrate to multiple environmental drivers using Energy Proxy Traits (EPTs), a new approach for measuring complex phenotypes captured on video as a spectrum of energy levels across different temporal frequencies in fluctuating pixel values.

View Article and Find Full Text PDF

Multi-use marine protected areas (MPAs) are increasingly designated towards achieving global conservation targets. To develop effective management, the impact of permitted activities must be understood. Potting for shellfish occurs on temperate rocky reefs globally with impact not fully quantified.

View Article and Find Full Text PDF

Microplastics are known to be associated with co-contaminants, but little is understood about the mechanisms by which these chemicals are transferred from ingested plastic to organisms. This study simulates marine avian gastric conditions in vitro to examine the bioaccessibility of authigenic metals (Fe, Mn) and trace metals (Co, Pb) that have been acquired by polyethylene microplastic pellets from their environment. Specifically, different categories of pellet were collected from beaches in Cornwall, southwest England, and exposed to an acidified saline solution of pepsin (pH ∼ 2.

View Article and Find Full Text PDF

Plastic production pellets collected from beaches of south west England contain variable concentrations of trace metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) that, in some cases, exceed concentrations reported for local estuarine sediments. The rates and mechanisms by which metals associate with virgin and beached polyethylene pellets were studied by adding a cocktail of 5 μg L(-1) of trace metals to 10 g L(-1) pellet suspensions in filtered seawater. Kinetic profiles were modelled using a pseudo-first-order equation and yielded response times of less than about 100 h and equilibrium partition coefficients of up to about 225 ml g(-1) that were consistently higher for beached pellets than virgin pellets.

View Article and Find Full Text PDF