Publications by authors named "Luke A Hardy"

Suture ligation of vascular tissues is slow and skill intensive. Ultrasonic (US) and radiofrequency (RF) devices enable more rapid vascular tissue ligation to maintain hemostasis, than sutures and mechanical clips, which leave foreign objects in the body and require exchange of instruments. However, US and RF devices are limited by excessive collateral thermal damage to adjacent tissues, and high jaw temperatures that require a long time to cool.

View Article and Find Full Text PDF

A nonsurgical laser procedure is being developed for treatment of female stress urinary incontinence (SUI). Previous studies in porcine vaginal tissues, ex vivo, as well as computer simulations, showed the feasibility of using near-infrared laser energy delivered through a transvaginal contact cooling probe to thermally remodel endopelvic fascia, while preserving the vaginal wall from thermal damage. This study explores optical properties of vaginal tissue in cadavers as an intermediate step towards future pre-clinical and clinical studies.

View Article and Find Full Text PDF

Objectives: The experimental Thulium fiber laser (TFL) is currently being studied as a potential alternative to the gold standard Holmium:YAG laser for lithotripsy. Recent advances in both Holmium and TFL technology allow operation at similar laser parameters for direct comparison. The use of a "dusting" mode with low pulse energy (0.

View Article and Find Full Text PDF

Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser.

View Article and Find Full Text PDF

Hydrocephalus is a chronic medical condition that occurs in individuals who are unable to reabsorb cerebrospinal fluid (CSF) created within the ventricles of the brain. Treatment requires excess CSF to be diverted from the ventricles to another part of the body, where it can be returned to the vascular system via a shunt system beginning with a catheter within the ventricle. Catheter failures due to occlusion by brain tissues commonly occur and require surgical replacement of the catheter.

View Article and Find Full Text PDF

The Thulium fiber laser (TFL) is being explored as an alternative to the Holmium : YAG laser for lithotripsy. TFL parameters differ in several fundamental ways from Holmium laser, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of laser induced bubbles was performed at 105,000 frames per second and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation and needle hydrophone data was also used to measure pressure transients.

View Article and Find Full Text PDF

Background And Objectives: A non-surgical method is being developed for treating female stress urinary incontinence by laser thermal remodeling of subsurface tissues with applied surface tissue cooling. Computer simulations of light transport, heat transfer, and thermal damage in tissue were performed, comparing transvaginal and transurethral approaches.

Study Design/materials And Methods: Monte Carlo (MC) simulations provided spatial distributions of absorbed photons in the tissue layers (vaginal wall, endopelvic fascia, and urethral wall).

View Article and Find Full Text PDF

Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall).

View Article and Find Full Text PDF

The thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the standard holmium:yttrium-aluminum-garnet laser. The more uniform beam profile of the TFL enables higher power transmission through smaller fibers. In this study, a 100-μm core, 140-μm outer-diameter (OD) silica fiber with 5-mm length hollow steel tip was integrated with 1.

View Article and Find Full Text PDF

Background: The experimental Thulium fiber laser (TFL) is currently being studied as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium:YAG laser-induced damage to ureter tissue and stone baskets have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage.

View Article and Find Full Text PDF

Using a validated in vitro ureter model for laser lithotripsy, the performance of an experimental thulium fiber laser (TFL) was studied and compared to the clinical gold standard holmium:YAG laser. The holmium laser (λ = 2120 nm) was operated with standard parameters of 600 mJ, 350 μs, 6 Hz, and 270-μm-core optical fiber. The TFL (λ=1908 nm) was operated with 35 mJ, 500 μs, 150 to 500 Hz, and a 100-μm-core fiber.

View Article and Find Full Text PDF