Within the developing central nervous system, the dynamics of synapse formation and elimination are insufficiently understood. It is ideal to study these processes in vivo, where neurons form synapses within appropriate behavioral and anatomical contexts. In vivo analysis is particularly important for long-range connections, since their development cannot be adequately studied in vitro.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2018
Stem Cells Transl Med
December 2017
The major neuropsychiatric conditions of schizophrenia, affective disorders, and infantile autism are characterized by chronic symptoms of episodic, stable, or progressive nature that result in significant morbidity. Symptomatic treatments are the mainstay but do not resolve the underlying disease processes, which are themselves poorly understood. The prototype psychotropic drugs are of variable efficacy, with therapeutic mechanisms of action that are still uncertain.
View Article and Find Full Text PDFTo create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components.
View Article and Find Full Text PDFDuring cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner.
View Article and Find Full Text PDFBackground: Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion.
View Article and Find Full Text PDFBackground: The proteins required for synaptic transmission are rapidly assembled at nascent synapses, but the mechanisms through which these proteins are delivered to developing presynaptic terminals are not understood. Prior to synapse formation, active zone proteins and synaptic vesicle proteins are transported along axons in distinct organelles referred to as piccolo-bassoon transport vesicles (PTVs) and synaptic vesicle protein transport vesicles (STVs), respectively. Although both PTVs and STVs are recruited to the same site in the axon, often within minutes of axo-dendritic contact, it is not known whether or how PTV and STV trafficking is coordinated before synapse formation.
View Article and Find Full Text PDFHow are synapses made? This question is one of the most important issues in neurobiology today and has been the subject of intense study in recent years. This review focuses on the mechanisms of presynaptic terminal formation in the mammalian central nervous system. Building a synapse requires stabilization of contacts between axons and dendrites and formation of synaptic subcellular structures.
View Article and Find Full Text PDF