Magnesium (Mg) and its alloys offer promise for aerospace, railway, and 3D technology applications, yet their inherent limitations, including inadequate strength, pose challenges. Magnesium matrix composites, particularly with metallic reinforcements like titanium (Ti) and its alloys, present a viable solution. Therefore, this study investigates the impact of Ti6Al4V reinforcement on AZ31 magnesium alloy composites produced using pulse plasma sintering (PPS).
View Article and Find Full Text PDFFinishing operations are one of the most challenging tasks during a manufacturing process, and are responsible for achieving dimensional accuracy of the manufactured parts and the desired surface topography properties. One of the most advanced finishing technologies is grinding. However, typical grinding processes have limitations in the acquired surface topography properties, especially in finishing difficult to cut materials such as Inconel 625.
View Article and Find Full Text PDFThe GeniCore Upgraded Field Assisted Sintering Technology U-FAST was applied to the sintering of a commercial Zr-based bulk metallic glass powder AMZ4. The XRD, SEM and DSC analysis of the sintered compacts showed the benefit of the U-FAST method as an enabler for the production of fully amorphous samples with 100% relative density when sintering at 420 °C/480 s (693 K/480 s) and 440 °C/ 60 s (713 K/480 s). The hardness values for fully amorphous samples, over HV1 519, surpass cast materials and 1625 MPa compressive strengths are comparable to commercial cast products.
View Article and Find Full Text PDFA new powder production method has been developed to speed up the search for novel alloys for additive manufacturing. The technique involves an ultrasonically agitated cold crucible installed at the top of a 20 kHz ultrasonic sonotrode. The material is melted with an electric arc and undergoes pulverization with standing wave vibrations.
View Article and Find Full Text PDFSelective Laser Melting (SLM) is a manufacturing technique that is currently used for the production of functional parts that are difficult to form by the traditional methods such as casting or CNC (Computer Numerical Control) cutting from a wide range of metallic materials. In our study, a mixture of commercially pure titanium (Ti) and 15% at. aluminum nitride (AlN) was Selective Laser Melted to form three-dimensional objects.
View Article and Find Full Text PDF