Publications by authors named "Lukasz Wojtasz"

Meiosis is a critical phase in the life cycle of sexually reproducing organisms. Chromosome numbers are halved during meiosis, which requires meiosis-specific modification of chromosome behaviour. Furthermore, suppression of transposons is particularly important during meiosis to allow the transmission of undamaged genomic information between generations.

View Article and Find Full Text PDF

Background: Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase.

View Article and Find Full Text PDF

Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs.

View Article and Find Full Text PDF

Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation.

View Article and Find Full Text PDF

HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I.

View Article and Find Full Text PDF

Analysis of female mammalian germ cells has been hindered by difficulties in isolating high purity germ cell populations from embryonic and fetal gonads. Meiotic prophase stage oocytes are particularly difficult to isolate due to the lack of suitable surface markers. Oct4 promoter driven GFP expression has been used to distinguish germ cells/oocytes (GFP positive) from somatic cells (GFP negative), however, the requirement for transgenic animals has limited the use of this technique.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial chromosomes usually have special sequences and genes that help in separating their DNA during cell division.
  • The study looked at Mycobacterium smegmatis to understand how these special parts, known as parABS, work for the first time.
  • They found that while one protein, ParB, is not vital for the bacteria, changing its amount can really affect their growth and cause problems with how the chromosomes are separated.
View Article and Find Full Text PDF