Publications by authors named "Lukasz Wieteska"

Aims: Ficolin 3 (FCN3) has the highest complement-activating capacity through the lectin pathway and is synthesized mainly in the liver and lung. Yet, its potential molecular mechanism in hepatocarcinogenesis is not fully understood.

Materials And Methods: The expression of FCN3 in hepatocellular carcinoma (HCC) tumor and non-tumor tissues was analyzed by RT-qPCR, Western blotting and immunofluorescence staining assays.

View Article and Find Full Text PDF

The complex multistep activation cascade of Ire1 involves changes in the Ire1 conformation and oligomeric state. Ire1 activation enhances ER folding capacity, in part by overexpressing the ER Hsp70 molecular chaperone BiP; in turn, BiP provides tight negative control of Ire1 activation. This study demonstrates that BiP regulates Ire1 activation through a direct interaction with Ire1 oligomers.

View Article and Find Full Text PDF
Article Synopsis
  • Betaglycan (BG) is a crucial co-receptor for TGF-β signaling, important for embryonic development, tissue maintenance, and fertility.
  • The study successfully reveals the structure of TGF-β when bound to both BG and its signaling receptors, TGFBR1 and TGFBR2, identifying key binding regions.
  • It uncovers unique binding interfaces that highlight BG's evolutionary adaptation for ligand selectivity and explains the mechanism by which TGF-β enhances signaling.
View Article and Find Full Text PDF

Isotopic labeling of methyl-substituted proteinogenic amino acids with C has transformed applications of solution-based NMR spectroscopy and allowed the study of much larger and more complex proteins than previously possible with N labeling. Procedures are well-established for producing methyl-labeled proteins expressed in bacteria, with efficient incorporation of C-methyl labeled metabolic precursors to enable the isotopic labeling of Ile, Val, and Leu methyl groups. Recently, similar methodology has been applied to enable C-methyl labeling of Ile, Val, and Leu in yeast, extending the approach to proteins that do not readily fold when produced in bacteria.

View Article and Find Full Text PDF

While checkpoint blockade immunotherapies have widespread success, they rely on a responsive immune infiltrate; as such, treatments enhancing immune infiltration and preventing immunosuppression are of critical need. We previously generated αPD-1 resistant variants of the murine HNSCC model MEER. While entirely αPD-1 resistant, these tumors regress after single dose of oncolytic vaccinia virus (VV).

View Article and Find Full Text PDF

Receptor tyrosine kinases (RTKs) are typically activated through a precise sequence of intracellular phosphorylation events starting with a tyrosine residue on the activation loop (A-loop) of the kinase domain (KD). From this point the mono-phosphorylated enzyme is active, but subject to stringent regulatory mechanisms which can vary dramatically across the different RTKs. In the absence of extracellular stimulation, fibroblast growth factor receptor 2 (FGFR2) exists in the mono-phosphorylated state in which catalytic activity is regulated to allow rapid response upon ligand binding, whilst restricting ligand-independent activation.

View Article and Find Full Text PDF

The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states.

View Article and Find Full Text PDF

TGFβ is a key regulator of oral squamous cell carcinoma (OSCC) progression, and its potential role as a therapeutic target has been investigated with a limited success. This study evaluates two novel TGFβ inhibitors as mono or combinatorial therapy with anti-PD-L1 antibodies (α-PD-L1 Ab) in a murine OSCC model. Immunocompetent C57BL/6 mice bearing malignant oral lesions induced by 4-nitroquinoline 1-oxide (4-NQO) were treated for 4 weeks with TGFβ inhibitors mRER (i.

View Article and Find Full Text PDF

The regulation of phosphatase activity is fundamental to the control of intracellular signalling and in particular the tyrosine kinase-mediated mitogen-activated protein kinase (MAPK) pathway. Shp2 is a ubiquitously expressed protein tyrosine phosphatase and its kinase-induced hyperactivity is associated with many cancer types. In non-stimulated cells we find that binding of the adaptor protein Grb2, in its monomeric state, initiates Shp2 activity independent of phosphatase phosphorylation.

View Article and Find Full Text PDF

Receptor tyrosine kinase (RTK)-mediated hyperactivation of the MAPK/Erk pathway is responsible for a large number of pathogenic outcomes including many cancers. Considerable effort has been directed at targeting this pathway with varying degrees of long term therapeutic success. Under non-stimulated conditions Erk is bound to the adaptor protein Shc preventing aberrant signalling by sequestering Erk from activation by Mek.

View Article and Find Full Text PDF

BiP is the only Hsp70 chaperone in the endoplasmic reticulum (ER) and similar to other Hsp70s, its activity relies on nucleotide- and substrate-controllable docking and undocking of its nucleotide-binding domain (NBD) and substrate-binding domain (SBD). However, little is known of specific features of the BiP conformational landscape that tune BiP to its unique tasks and the ER environment. We present methyl NMR analysis of the BiP chaperone cycle that reveals surprising conformational heterogeneity of ATP-bound BiP that distinguishes BiP from its bacterial homologue DnaK.

View Article and Find Full Text PDF

Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins.

View Article and Find Full Text PDF

: There is barely any evidence of antipsychotic drugs affecting the molecular clockwork in human, yet it is suggested that clock genes are associated with dopaminergic transmission, i.e. the main target of this therapeutics.

View Article and Find Full Text PDF

The traditional computational modeling of protein structure, dynamics, and interactions remains difficult for many protein systems. It is mostly due to the size of protein conformational spaces and required simulation time scales that are still too large to be studied in atomistic detail. Lowering the level of protein representation from all-atom to coarse-grained opens up new possibilities for studying protein systems.

View Article and Find Full Text PDF

The aim of the present study was to identify polymorphic forms of the nuclear receptor subfamily 3, group C, member 1 (NR3C1) and transforming growth factor β1 (TGF-β1) genes and evaluate their impact on the expression levels of interleukin (IL)-5 and IL‑15 in asthma. The study was conducted on a control group consisting of 91 people (54 women and 37 men). The patient group consisted of 130 participants (86 women and 44 men).

View Article and Find Full Text PDF

Background: Although the development of novel diagnostic and treatment strategies concerning laryngeal cancer is highly intensive, the survival rate remains virtually unchanged. Small non-coding RNAs appear to be very promising biomarkers - and so remain the focus of extensive investigation in laryngeal cancer.

Objective: We examined the expression of five miRNA and five genes related to cancer whether they could be potential laryngeal cancer biomarkers.

View Article and Find Full Text PDF

Background/aims: The PIK3CD gene encodes the delta catalytic subunit of phosphoinositide 3-kinase (PI3K), an element of the neuregulin 1-downstream ErbB4-PI3K signaling pathway, which was recently identified as a molecular target for the treatment of schizophrenia. The aim of the study was to examine the effect of haloperidol (HALO), clozapine (CLO), olanzapine (OLA), quetiapine (QUE) and amisulpride (AMI) on the mRNA and protein expression of genes encoding the elements of ErbB4-PI3K pathway, in a human central nervous system cell line.

Methods: The U-87MG human glioblastoma cell line was used as an experimental model.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory and heterogeneous disease developing mostly through allergic inflammation, which modifies the expression of various cytokines and neurotrophins. Previous studies suggest the involvement of interleukin (IL)-15 in the regulation of immune response in asthma. Brain-derived neurotrophic factor (BDNF) II plays an important role as a regulator of development and survival of neurons as well as maintenance of their physiological activity.

View Article and Find Full Text PDF

Aims: The high glucose concentration observed in diabetic patients is a recognized factor of mitochondrial damage in various cell types. Its impact on mitochondrial bioenergetics in blood platelets remains largely vague. The aim of the study was to determine how the metabolism of carbohydrates, which has been impaired by streptozotocin-induced diabetes may affect the functioning of platelet mitochondria.

View Article and Find Full Text PDF

In diabetes-related states of chronic hyperglycaemia elevated concentrations of glucose may alter the functioning of platelet enzymes involved in arachidonic acid metabolism, including prostaglandin H2 synthase (cyclooxygenase) (PGHS, COX). Therefore, the principal aim of this study was to assess the effects of experimental chronic hyperglycaemia on platelet PGHS-1 (COX-1) expression and activity. Blood platelet activation and reactivity were assessed in Sprague-Dawley rats with the 5-month streptozotocin (STZ) diabetes.

View Article and Find Full Text PDF

Protein-peptide interactions play essential functional roles in living organisms and their structural characterization is a hot subject of current experimental and theoretical research. Computational modeling of the structure of protein-peptide interactions is usually divided into two stages: prediction of the binding site at a protein receptor surface, and then docking (and modeling) the peptide structure into the known binding site. This paper presents a comprehensive CABS-dock method for the simultaneous search of binding sites and flexible protein-peptide docking, available as a user's friendly web server.

View Article and Find Full Text PDF

Background: Personal and environmental factors might have an impact on strategies of coping with stress and temperamental traits according to the Regulative Theory of Temperament in asthmatic patients. They can modify the clinical picture, the course of a disease and effectiveness of treatment. Personal variables are key factors in determining formal characteristic of behavior and effective management method in asthmatic patients.

View Article and Find Full Text PDF

Threonine aldolase (TA) catalyzes a reversible reaction, in which threonine is decomposed into glycine and acetaldehyde. The same enzyme can be used to catalyze aldol reaction between glycine and a variety of aromatic and aliphatic aldehydes, thus creating various alpha-amino-alcohols. Therefore, TA is a very promising enzyme that could be used to prepare biologically active compounds or building blocks for pharmaceutical industry.

View Article and Find Full Text PDF

Glucocorticosteroids (GCs) are basic drugs in therapy of a number of diseases, including chronic diseases of the respiratory system. They are the most important anti-inflammatory drugs in the treatment of asthma. GCs after binding to the glucocorticoid receptor (GR) form the complex (transcription factor), which acts on promoter and regulatory parts of genes enhancing the expression of anti-inflammatory proteins and decreasing the proinflammatory protein synthesis, including numerous cytokines mediating inflammation in the course of asthma.

View Article and Find Full Text PDF

Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn2qq3vep145bejoc0mejgqaq6lem0asm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once