Photochem Photobiol
November 2021
Photodynamic Therapy (PDT) seems to be a promising method in the treatment of larynx tumor tissues. The aim of the present analysis was the study of photosensitizer penetration of larynx tissue associated with the application of PDT in vitro. This study is based on the use of photosensitive compounds Rose Bengal (RB) that selectively accumulate in larynx tissue.
View Article and Find Full Text PDFIntroduction: Preoperative evaluation of magnetic resonance (MR) images may not be sufficient for the precise planning of anal fistula surgery or for stem cell therapy. Three-dimensional (3D) printing allows one to obtain spatial structures in a 1 : 1 scale with unprecedented precision.
Aim: To combine magnetic resonance imaging (MRI) with 3D printing for more precise visualisation of perianal Crohn's disease.
Biomed Pharmacother
February 2021
Photooxidation generates reactive oxygen species (ROS) through the interaction of dyes or surfaces with light radiation of appropriate wavelength. The reaction is of wide utility and is highly effective in photodynamic therapy (PDT) of various types of cancer and skin disease. Understanding generation of singlet oxygen has contributed to the development of PDT and its subsequent use in vivo.
View Article and Find Full Text PDFNeonatal sepsis triggers an inflammatory response that contributes to mortality and multiple organ injury. Pentoxifylline (PTX), a phosphodiesterase inhibitor which suppresses pro-inflammatory cytokines, is a candidate adjunctive therapy for newborn sepsis. We hypothesized that administration of PTX in addition to antibiotics decreases live bacteria-induced pro-inflammatory and/or enhances anti-inflammatory cytokine production in septic neonatal mice without augmenting bacterial growth.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
March 2019
Photodynamic oxygen consumption was measured by changes in spin-lattice relaxation time (T) in aqueous solution in a clinical GE scanner at 1.5 T. Similar measurements were attempted in excised laryngeal and thyroid tissues that were infused with Rose Bengal.
View Article and Find Full Text PDFNeonatal sepsis and its accompanying inflammatory response contribute to substantial morbidity and mortality. Pentoxifylline (PTX), a phosphodiesterase inhibitor which suppresses transcription and production of proinflammatory cytokines, is a candidate adjunctive therapy for newborn sepsis. We hypothesized that PTX decreases live microbe-induced inflammatory cytokine production in newborn blood.
View Article and Find Full Text PDFIntroduction: Neonatal inflammation, mediated in part through Toll-like receptor (TLR) and inflammasome signaling, contributes to adverse outcomes including organ injury. Pentoxifylline (PTX), a phosphodiesterase inhibitor which potently suppresses cytokine production in newborn cord blood, is a candidate neonatal anti-inflammatory agent. We hypothesized that combinations of PTX with other anti-inflammatory agents, the steroid dexamethasone (DEX) or the macrolide azithromycin (AZI), may exert broader, more profound and/or synergistic anti-inflammatory activity towards neonatal TLR- and inflammasome-mediated cytokine production.
View Article and Find Full Text PDFBackground: Toll-like receptor (TLR)-mediated inflammation may contribute to neonatal sepsis, for which pentoxifylline (PTX), a phosphodiesterase inhibitor that raises intracellular cAMP, is a candidate adjunctive therapy. We characterized the anti-inflammatory effects of PTX toward TLR-mediated production of inflammatory (tumor necrosis factor (TNF) and interleukin (IL)-1β) and proresolution (IL-6 and IL-10) cytokines in human newborn and adult blood.
Methods: Newborn cord and adult blood were treated with PTX (50-400 µmol/l) before, during or after stimulation with LPS (TLR4 agonist), R848 (TLR7/8 agonist) or LPS/ATP (inflammasome activation).