Publications by authors named "Lukasz Kidzinski"

In clinical practice and biomedical research, measurements are often collected sparsely and irregularly in time, while the data acquisition is expensive and inconvenient. Examples include measurements of spine bone mineral density, cancer growth through mammography or biopsy, a progression of defective vision, or assessment of gait in patients with neurological disorders. Practitioners often need to infer the progression of diseases from such sparse observations.

View Article and Find Full Text PDF

Tumor-associated macrophages are transcriptionally heterogeneous, but the spatial distribution and cell interactions that shape macrophage tissue roles remain poorly characterized. Here, we spatially resolve five distinct human macrophage populations in normal and malignant human breast and colon tissue and reveal their cellular associations. This spatial map reveals that distinct macrophage populations reside in spatially segregated micro-environmental niches with conserved cellular compositions that are repeated across healthy and diseased tissue.

View Article and Find Full Text PDF

Measures of human movement dynamics can predict outcomes like injury risk or musculoskeletal disease progression. However, these measures are rarely quantified in large-scale research studies or clinical practice due to the prohibitive cost, time, and expertise required. Here we present and validate OpenCap, an open-source platform for computing both the kinematics (i.

View Article and Find Full Text PDF

Unmeasured or latent variables are often the cause of correlations between multivariate measurements, which are studied in a variety of fields such as psychology, ecology, and medicine. For Gaussian measurements, there are classical tools such as factor analysis or principal component analysis with a well-established theory and fast algorithms. Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.

View Article and Find Full Text PDF

Physical function decline due to aging or disease can be assessed with quantitative motion analysis, but this currently requires expensive laboratory equipment. We introduce a self-guided quantitative motion analysis of the widely used five-repetition sit-to-stand test using a smartphone. Across 35 US states, 405 participants recorded a video performing the test in their homes.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) display heterogeneous phenotypes. Yet the exact tissue cues that shape macrophage functional diversity are incompletely understood. Here we discriminate, spatially resolve and reveal the function of five distinct macrophage niches within malignant and benign breast and colon tissue.

View Article and Find Full Text PDF

Precision medicine requires a deep understanding of complex biomedical and healthcare data, which is being generated at exponential rates and increasingly made available through public biobanks, electronic medical record systems and biomedical databases and knowledgebases. The complexity and sheer amount of data prohibit manual manipulation. Instead, the field depends on artificial intelligence approaches to parse, annotate, evaluate and interpret the data to enable applications to patient healthcare At the 2023 Pacific Symposium on Biocomputing (PSB) session entitled "Precision Medicine: Using Artificial Intelligence (AI) to improve diagnostics and healthcare", we spotlight research that develops and applies computational methodologies to solve biomedical problems.

View Article and Find Full Text PDF

Modifying the foot progression angle during walking can reduce the knee adduction moment, a surrogate measure of medial knee loading. However, not all individuals reduce their knee adduction moment with the same modification. This study evaluates whether a personalized approach to prescribing foot progression angle modifications increases the proportion of individuals with medial knee osteoarthritis who reduce their knee adduction moment, compared to a non-personalized approach.

View Article and Find Full Text PDF

Background: Freezing of gait, a common symptom of Parkinson's disease, presents as sporadic episodes in which an individual's feet suddenly feel stuck to the ground. Inertial measurement units (IMUs) promise to enable at-home monitoring and personalization of therapy, but there is a lack of consensus on the number and location of IMUs for detecting freezing of gait. The purpose of this study was to assess IMU sets in the context of both freezing of gait detection performance and patient preference.

View Article and Find Full Text PDF

The continued generation of large amounts of data within healthcare-from imaging to electronic medical health records to genomics and multi-omics -necessitates tools and methods to parse and interpret these data to improve healthcare outcomes. Artificial intelligence, and in particular deep learning, has enabled researchers to gain new insights from large scale and multimodal data. At the 2022 Pacific Symposium on Biocomputing (PSB) session entitled "Precision Medicine: Using Artificial Intelligence to Improve Diagnostics and Healthcare", we showcase the latest research, influenced and inspired by the idea of using technology to build a more fair, tailored, and cost-effective healthcare system after the COVID-19 pandemic.

View Article and Find Full Text PDF

Cellular composition and structural organization of cells in the tissue determine effective antitumor response and can predict patient outcome and therapy response. Here we present Seg-SOM, a method for dimensionality reduction of cell morphology in H&E-stained tissue images. Seg-SOM resolves cellular tissue heterogeneity and reveals complex tissue architecture.

View Article and Find Full Text PDF

Objective: We evaluated a fully automated femoral cartilage segmentation model for measuring T2 relaxation values and longitudinal changes using multi-echo spin-echo (MESE) magnetic resonance imaging (MRI). We open sourced this model and developed a web app available at https://kl.stanford.

View Article and Find Full Text PDF

Modeling human motor control and predicting how humans will move in novel environments is a grand scientific challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typically, researchers have developed control models that encode physiologically plausible motor control hypotheses and compared the resulting simulation behaviors to measurable human motion data.

View Article and Find Full Text PDF

Vital signs, including heart rate and body temperature, are useful in detecting or monitoring medical conditions, but are typically measured in the clinic and require follow-up laboratory testing for more definitive diagnoses. Here we examined whether vital signs as measured by consumer wearable devices (that is, continuously monitored heart rate, body temperature, electrodermal activity and movement) can predict clinical laboratory test results using machine learning models, including random forest and Lasso models. Our results demonstrate that vital sign data collected from wearables give a more consistent and precise depiction of resting heart rate than do measurements taken in the clinic.

View Article and Find Full Text PDF

The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000 seasonal variations in omics analytes and clinical measures.

View Article and Find Full Text PDF

Many neurological and musculoskeletal diseases impair movement, which limits people's function and social participation. Quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and highly trained personnel. Here, we present a method for predicting clinically relevant motion parameters from an ordinary video of a patient.

View Article and Find Full Text PDF

Equinus deformity is one of the most common gait deformities in children with cerebral palsy. We examined whether estimates of gastrocnemius length in gait could identify limbs likely to have short-term and long-term improvements in ankle kinematics following gastrocnemius lengthening surgery to correct equinus. We retrospectively analyzed data of 891 limbs that underwent a single-event multi-level surgery (SEMLS), and categorized outcomes based on the normalcy of ankle kinematics.

View Article and Find Full Text PDF

Freezing of gait (FOG) is a devastating motor symptom of Parkinson's disease that leads to falls, reduced mobility, and decreased quality of life. Reliably eliciting FOG has been difficult in the clinical setting, which has limited discovery of pathophysiology and/or documentation of the efficacy of treatments, such as different frequencies of subthalamic deep brain stimulation (STN DBS). In this study we validated an instrumented gait task, the turning and barrier course (TBC), with the international standard FOG questionnaire question 3 (FOG-Q3, r = 0.

View Article and Find Full Text PDF

Purpose: To develop an automated model for staging knee osteoarthritis severity from radiographs and to compare its performance to that of musculoskeletal radiologists.

Materials And Methods: Radiographs from the Osteoarthritis Initiative staged by a radiologist committee using the Kellgren-Lawrence (KL) system were used. Before using the images as input to a convolutional neural network model, they were standardized and augmented automatically.

View Article and Find Full Text PDF

The academic and behavioral progress of children is associated with the timely development of reading and writing skills. Dysgraphia, characterized as a handwriting learning disability, is usually associated with dyslexia, developmental coordination disorder (dyspraxia), or attention deficit disorder, which are all neuro-developmental disorders. Dysgraphia can seriously impair children in their everyday life and require therapeutic care.

View Article and Find Full Text PDF

Annotation of foot-contact and foot-off events is the initial step in post-processing for most quantitative gait analysis workflows. If clean force plate strikes are present, the events can be automatically detected. Otherwise, annotation of gait events is performed manually, since reliable automatic tools are not available.

View Article and Find Full Text PDF

Single-event multilevel surgery (SEMLS) is a standard treatment approach aimed at improving gait for patients with cerebral palsy, but the effect of this approach compared to natural progression without surgical intervention is unclear. In this study, we used retrospective patient history, physical exam, and three-dimensional gait analysis data from 2,333 limbs to build regression models estimating the effect of SEMLS on gait, while controlling for expected natural progression. Post-hoc classifications using the regression model results identified which limbs would exhibit gait within two standard deviations of typical gait at the follow-up visit with or without a SEMLS with 73% and 77% accuracy, respectively.

View Article and Find Full Text PDF

The pedagogical modelling of everyday classroom practice is an interesting kind of evidence, both for educational research and teachers' own professional development. This paper explores the usage of wearable sensors and machine learning techniques to automatically extract orchestration graphs (teaching activities and their social plane over time), on a dataset of 12 classroom sessions enacted by two different teachers in different classroom settings. The dataset included mobile eye-tracking as well as audiovisual and accelerometry data from sensors worn by the teacher.

View Article and Find Full Text PDF