Bone Tissue engineering (BTE) has recently been introduced as an alternative to conventional treatments for large non-healing bone defects. BTE approaches mimic autologous bone grafts, by combining cells, scaffold, and growth factors, and have the added benefit of being able to manipulate these constituents to optimize healing. Electrical stimulation (ES) has long been used to successfully treat non-healing fractures and has recently been shown to stimulate bone cells to migrate, proliferate, align, differentiate, and adhere to bio compatible scaffolds, all cell behaviors that could improve BTE treatment outcomes.
View Article and Find Full Text PDFLimb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded.
View Article and Find Full Text PDFA significant proportion of men diagnosed with prostate cancer (PCa) eventually develop metastatic disease, which progresses to castration resistance, despite initial response to androgen deprivation. As anticancer therapy has become increasingly effective, acquired drug resistance has emerged, limiting efficacy. Combination treatment, utilizing different drug classes, exemplifies a possible strategy to foil resistance development.
View Article and Find Full Text PDFThe influence of the histone deacetylase (HDAC)-inhibitor, valproic acid (VPA), on bladder cancer cell adhesion in vitro was investigated in this paper. TCCSUP and RT-112 bladder cancer cells were treated with VPA (0.5 or 1 mM) twice or thrice weekly for 14 days.
View Article and Find Full Text PDFWe evaluated whether low-dosed interferon alpha (IFNa) may augment the anti-tumor potential of the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer cells in vitro and in vivo. PC-3, DU-145, or LNCaP prostate cancer cells were treated with VPA (1 mM), IFNa (200 U/ml), or with the VPA-IFNa combination. Tumor cell growth, cell cycle progression, and cell cycle regulating proteins were then investigated by the MTT assay, flow cytometry, and western blotting.
View Article and Find Full Text PDFThe growth potential of PC3 prostate cancer cells, sensible (PC3(par)) or resistant (PC3(res)) to the mTOR inhibitor everolimus (RAD001) was investigated. Cell growth and proliferation of PC3(res) was similar to that of PC3(par), and late apoptosis increased in PC3(par) but decreased in PC3(res) following treatment with low dosed everolimus. PC3(res) accumulated in the G2/M-phase, accompanied by cdk1, cdk2 and cyclin B elevation.
View Article and Find Full Text PDFBackground: Single drug use has not achieved satisfactory results in the treatment of prostate cancer, despite application of increasingly widespread targeted therapeutics. In the present study, the combined impact of the mammalian target of rapamycin (mTOR)-inhibitor RAD001, the dual EGFr and VGEFr tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on prostate cancer growth and adhesion in vitro was investigated.
Methods: PC-3, DU-145 and LNCaP cells were treated with RAD001, AEE788 or VPA or with a RAD-AEE-VPA combination.
Anticancer Drugs
November 2011
Our aim was to analyze the impact of the histone deacetylase (HDAC)-inhibitor valproic acid (VPA) on bladder cancer cell growth in vitro. RT-4, TCCSUP, UMUC-3, and RT-112 bladder cancer cells were treated with VPA (0.125-1 mmol/l) without and with preincubation periods of 3 and 5 days.
View Article and Find Full Text PDFThe concept of molecular tumor targeting might provide new hope in the treatment of advanced prostate cancer. We evaluated metastasis blocking properties of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 on prostate cancer cell lines. RAD001 or VPA were applied to PC-3 or LNCaP cells, either separately or in combination.
View Article and Find Full Text PDFAims: To analyze the combined impact of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and the mammalian target of rapamycin (mTOR) inhibitor RAD001 on prostate cancer cell growth.
Main Methods: PC-3, DU-145 and LNCaP cells were treated with RAD001, VPA or with an RAD001-VPA combination for 3 or 5 days. Tumor cell growth, cell cycle progression and cell cycle regulating proteins were then investigated by MTT assay, flow cytometry and Western blotting, respectively.
The impact of the mTOR inhibitor RAD001 combined with the EGFr/VEGFr tyrosine kinase inhibitor AEE788 on prostate tumor cell growth, adhesion and migration was analyzed in vitro. The RAD001-AEE788 combination profoundly reduced tumor-endothelium and tumor-matrix contacts, suppressing cell growth and cell cycle progression. The underlying molecular mode of action depended on the cell phenotype, since cell cycle proteins, integrin subtype expression and integrin dependent signaling were altered in a different manner in PC-3 and DU-145 versus LNCaP prostate cancer cells.
View Article and Find Full Text PDFBackground: The concept of molecular tumor targeting might be an innovative option to treat advanced prostate cancer. We analyzed the effect of combining the multiple receptor tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on adhesion and growth properties of prostate cancer cell lines.
Methods: PC-3, DU-145, and LNCaP cells were treated with AEE788, VPA or with an AEE788-VPA combination, and cell cycle progression investigated.
Tumor cells have evolved effective strategies to escape the host immune response. The objective of this study was to determine whether tumor cells can condition endothelial cells in a specific manner to prevent subsequent adhesion of polymorphonuclear neutrophils (PMNs) and/or peripheral blood lymphocytes (PBLs). Human umbilical vein endothelial cells (HUVECs) and UKF-NB-4 neuroblastoma tumor cells were established in coculture on opposite sides of porous transwell filters.
View Article and Find Full Text PDFObjective: To evaluate adhesion and growth inhibiting effects of the multiple receptor tyrosine kinase inhibitor AEE788 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on renal cell carcinoma (RCC) cells.
Materials And Methods: Caki-1 cells were treated with AEE788 and VPA, either alone or in combination, to investigate RCC cell adhesion to vascular endothelial cells or to immobilized extracellular matrix proteins. Tumour cell proliferation was examined by MTT dye reduction assay.
Background: Treatment options for metastatic renal cell carcinoma (RCC) are limited due to resistance to chemo- and radiotherapy. The development of small-molecule multikinase inhibitors has now opened novel treatment options. We evaluated the influence of the receptor tyrosine kinase inhibitor AEE788, applied alone or combined with the mammalian target of rapamycin (mTOR) inhibitor RAD001, on RCC cell adhesion and proliferation in vitro.
View Article and Find Full Text PDFTreatment strategies for metastatic renal cell carcinoma (RCC) have been limited due to chemotherapy and radiotherapy resistance. The development of targeted drugs has now opened novel therapeutic options. In the present study, anti-tumoral properties of the histone deacetylase inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical RCC models.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors belong to a promising class of antineoplastic agents which affect tumor growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro on preclinical colon and pancreatic cancer models. Human colon adenocarcinoma HT-29 and pancreatic carcinoma DanG cells were treated with 1 mM VPA for different time periods during cell proliferation MTT assays, and to evaluate the tumor cell adhesion to endothelial cell monolayers.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical renal cell carcinoma (RCC) models. Caki-1, KTC-26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation.
View Article and Find Full Text PDF