Publications by authors named "Lukasova Vera"

Article Synopsis
  • - Vitiligo is the most common skin disorder involving loss of pigmentation, and current treatments aim to stop the immune response and promote skin cell regeneration.
  • - This study explored a new delivery system using platelet-rich plasma (PRP) embedded in specially designed fibrous scaffolds to enhance the release of bioactive molecules beneficial for skin cells.
  • - Results showed that the centrifugally spun scaffolds released nearly double the bioactive molecules compared to electrospun ones, with a sustained release over 14 days, boosting melanocyte activity and growth as the concentration of these molecules increased.
View Article and Find Full Text PDF

Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers.

View Article and Find Full Text PDF

This study evaluates the effect of electrospun dressings in critical sized full-thickness skin defects in rabbits. Electrospun poly-ε-caprolactone (PCL) and polyvinyl alcohol (PVA) nanofibers were tested and . The PCL scaffold supported the proliferation of mesenchymal stem cells, fibroblasts and keratinocytes.

View Article and Find Full Text PDF

The formation of nanostructures on titanium implant surfaces is a promising strategy to modulate cell adhesion and differentiation, which are crucial for future application in bone regeneration. The aim of this study was to investigate how the nanotube diameter and/or nanomechanical properties alter human osteoblast like cell (Saos-2) adhesion, growth and osteogenic differentiation . Nanotubes, with diameters ranging from 24 to 66 nm, were fabricated on a commercially pure titanium (cpTi) surface using anodic oxidation with selected end potentials of 10 V, 15 V and 20 V.

View Article and Find Full Text PDF

The structure degradation and strength changes of calcium phosphate scaffolds after long-term exposure to an acidic environment simulating the osteoclastic activity were determined and compared. Sintered calcium phosphate scaffolds with different phase structures were prepared with a similar cellular pore structure and an open porosity of over 80%. Due to microstructural features the biphasic calcium phosphate (BCP) scaffolds had a higher compressive strength of 1.

View Article and Find Full Text PDF

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions.

View Article and Find Full Text PDF

Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems. The current study delivers a three-dimensional (3D) scaffold prepared by blend centrifugal spinning loaded with the osteogenic supplements (OS) β-glycerol phosphate, ascorbate-2-phosphate and dexamethasone. The OS were successfully encapsulated into a fibrous scaffold and showed sustained release for 30 days.

View Article and Find Full Text PDF

Background: The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells.

View Article and Find Full Text PDF

Objectives: Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs).

View Article and Find Full Text PDF

Platelets are a popular source of native growth factors for tissue engineering applications. The aim of the study was to verify the use of platelet lysate as a fetal bovine serum (FBS) replacement for skin cell culture. The cytokine content of the platelet lysate was characterized using the Bio-Plex system.

View Article and Find Full Text PDF

In the present work, we developed a novel needleless emulsion electrospinning technique that improves the production rate of the core/shell production process. The nanofibres are based on poly-ε-caprolactone (PCL) as a continuous phase combined with a droplet phase based on Pluronic F-68 (PF-68). The PCL-PF-68 nanofibres show a time-regulated release of active molecules.

View Article and Find Full Text PDF

Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores.

View Article and Find Full Text PDF