Publications by authors named "Lukas Wittenbecher"

Two-dimensional semiconducting transition metal dichalcogenides are promising materials for optoelectronic applications due to their strongly bound excitons. While bright excitons have been thoroughly scrutinized, dark excitons have been much less investigated, as they are not directly observable with far-field spectroscopy. However, with their nonzero momenta, dark excitons are significant for applications requiring long-range transport or coupling to external fields.

View Article and Find Full Text PDF

We present an erratum regarding the calculated phase matching bandwidths for achromatic second harmonic generation presented in our paper [Opt. Express29, 25593 (2021)10.1364/OE.

View Article and Find Full Text PDF

The generation and characterization of ultrashort laser pulses in the deep ultraviolet spectral region is challenging, especially at high pulse repetition rates and low pulse energies. Here, we combine achromatic second harmonic generation and adaptive pulse compression for the efficient generation of sub-10 fs deep ultraviolet laser pulses at a laser repetition rate of 200 kHz. Furthermore, we simplify the pulse compression scheme and reach pulse durations of ≈10 fs without the use of adaptive optics.

View Article and Find Full Text PDF

The hybrid combination of two-dimensional (2D) transition metal dichalcogenides (TMDs) and plasmonic materials open up novel means of (ultrafast) optoelectronic applications and manipulation of nanoscale light-matter interaction. However, control of the plasmonic excitations by TMDs themselves has not been investigated. Here, we show that the ultrathin 2D WSe crystallites permit nanoscale spatially controlled coherent excitation of surface plasmon polaritons (SPPs) on smooth Au films.

View Article and Find Full Text PDF

Hot electron relaxation and transport in nanostructures involve a multitude of ultrafast processes whose interplay and relative importance are still not fully understood, but which are relevant for future applications in areas such as photocatalysis and optoelectronics. To unravel these processes, their dynamics in both time and space must be studied with high spatiotemporal resolution in structurally well-defined nanoscale objects. We employ time-resolved photoemission electron microscopy to image the relaxation of photogenerated hot electrons within InAs nanowires on a femtosecond time scale.

View Article and Find Full Text PDF

Michelson interferometers have been routinely used in various applications ranging from testing optical components to interferometric time-resolved spectroscopy measurements. Traditionally, plate beamsplitters are employed to redistribute radiation between the two arms of an interferometer. However, such an interferometer is susceptible to relative phase fluctuations between the two arms resulting from vibrations of the beamsplitter.

View Article and Find Full Text PDF

The integration of metallic plasmonic nanoantennas with quantum emitters can dramatically enhance coherent harmonic generation, often resulting from the coupling of fundamental plasmonic fields to higher-energy, electronic or excitonic transitions of quantum emitters. The ultrafast optical dynamics of such hybrid plasmon-emitter systems have rarely been explored. Here, we study those dynamics by interferometrically probing nonlinear optical emission from individual porous gold nanosponges infiltrated with zinc oxide (ZnO) emitters.

View Article and Find Full Text PDF

Broadband femtosecond laser pulses manipulated by pulse shapers based on a liquid crystal spatial light modulator (LC-SLM) inevitably experience periodic spectral distortions due to Fabry-Perot interference effects within the LC-SLM. We present a method, applicable to phase and amplitude pulse shapers based on dual LC-SLMs, that enables the calibration and suppression of the undesired spectral intensity modulations in a non-iterative fashion. We demonstrate that the method considerably improves the amplitude shaping fidelity of phase and amplitude pulse shapers without compromising the phase shaping properties.

View Article and Find Full Text PDF