Quantum technologies play a pivotal role in driving transformative advancements across diverse fields, surpassing classical approaches and empowering us to address complex challenges more effectively; however, the need for ultra-low temperatures limits the use of these technologies to particular fields. This work comes to alleviate this problem. We present a way of phononic bandgap engineering using FEM by which the radiative mechanical energy dissipation of a nanomechanical oscillator can be significantly suppressed through coupling with a complementary oscillating mode of a defect of the surrounding phononic crystal (PnC).
View Article and Find Full Text PDFSingle photon sources (SPS) based on semiconductor quantum dot (QD) platforms are restricted to low temperature (T) operation due to the presence of strong dephasing processes. Although the integration of QD in optical cavities provides an enhancement of its emission properties, the technical requirements for maintaining high indistinguishability () at high T are still beyond the state of the art. Recently, new theoretical approaches have shown promising results by implementing two-dipole-coupled-emitter systems.
View Article and Find Full Text PDFWe demonstrate a dual-material integrated photonic thermometer, fabricated by high accuracy micro-transfer printing. A freestanding diamond micro-disk resonator is printed in close proximity to a gallium nitride on a sapphire racetrack resonator, and respective loaded Q factors of 9.1 × 10 and 2.
View Article and Find Full Text PDFUltrahigh sensitivity temperature measurement is becoming increasingly relevant for different scientific and technological fields from fundamental physics to high-precision engineering applications. Here, we demonstrate the use of a nanomechanical resonator-free standing silicon nitride membranes with thicknesses in the nanoscale-for room temperature thermometry reaching an unprecedented resolution of 15 μK. These devices were characterized by using an interferometric system at high vacuum, where there are only two possible mechanisms for heat transfer: thermal conductivity and radiation.
View Article and Find Full Text PDFStaying in control of delicate processes in the evermore emerging field of micro, nano and quantum-technologies requires suitable devices to measure temperature and temperature flows with high thermal and spatial resolution. In this work, we design optical microring resonators (ORRs) made of different materials (silicon, diamond and gallium nitride) and simulate their temperature behavior using several finite-element methods. We predict the resonance frequencies of the designed devices and their temperature-induced shift (16.
View Article and Find Full Text PDF