Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V.
View Article and Find Full Text PDFCapillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes.
View Article and Find Full Text PDF