Publications by authors named "Lukas T Rotkopf"

Background: Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer from a lack of standardization.

Purpose: We propose a physics-informed deep learning framework which is capable of analyzing dynamic susceptibility contrast perfusion MRI data and recovering the dynamic tissue response with high accuracy.

View Article and Find Full Text PDF

Background And Purpose: The novel MR imaging technique of vascular architecture mapping allows in vivo characterization of local changes in cerebral microvasculature, but reference ranges for vascular architecture mapping parameters in healthy brain tissue are lacking, limiting its potential applicability as an MR imaging biomarker in clinical practice. We conducted whole-brain vascular architecture mapping in a large cohort to establish vascular architecture mapping parameter references ranges and identify region-specific cortical and subcortical microvascular profiles.

Materials And Methods: This was a single-center examination of adult patients with unifocal, stable low-grade gliomas with multiband spin- and gradient-echo EPI sequence at 3T using parallel imaging.

View Article and Find Full Text PDF

Background: A recent innovation in computed tomography (CT) imaging has been the introduction of photon-counting detector CT (PCD-CT) systems, which are able to register the number and the energy level of incoming x‑ray photons and have smaller detector elements compared with conventional CT scanners that operate with energy-integrating detectors (EID-CT).

Objectives: The study aimed to evaluate the potential benefits of a novel, non-CE certified PCD-CT in detecting myeloma-associated osteolytic bone lesions (OL) compared with a state-of-the-art EID-CT.

Materials And Methods: Nine patients with multiple myeloma stage III (according to Durie and Salmon) underwent magnetic resonance imaging (MRI), EID-CT, and PCD-CT of the lower lumbar spine and pelvis.

View Article and Find Full Text PDF

Background: Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test-retest experiments, which might help to overcome the problem of limited generalizability to external data.

Purpose: To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test-retest-study, on the performance and generalizability of radiomics models.

View Article and Find Full Text PDF

Background And Purpose: Automated perfusion imaging can detect stroke patients with unknown time of symptom onset who are eligible for thrombolysis. However, the availability of this technique is limited. We, therefore, established the novel concept of computed tomography (CT) hypoperfusion-hypodensity mismatch, i.

View Article and Find Full Text PDF

Objective: To assess the potential dose reduction achievable with clinical photon-counting CT (PCCT) in ultra-high resolution (UHR) mode compared to acquisitions using the standard resolution detector mode (Std).

Materials And Methods: With smaller detector pixels, PCCT achieves far higher spatial resolution than energy-integrating (EI) CT systems. The reconstruction of UHR acquisitions to the lower spatial resolution of conventional systems results in an image noise and radiation dose reduction.

View Article and Find Full Text PDF

Objectives: The goal of this study is to demonstrate the performance of radiomics and CNN-based classifiers in determining the primary origin of gastrointestinal liver metastases for visually indistinguishable lesions.

Methods: In this retrospective, IRB-approved study, 31 pancreatic cancer patients with 861 lesions (median age [IQR]: 65.39 [56.

View Article and Find Full Text PDF

Purpose: According to PI-RADS v2.1, T2-weighted imaging (T2WI) is the dominant sequence for transition zone (TZ) lesions. This study aimed to assess, whether diffusion-weighted imaging (DWI) information influences the assignment of T2WI scores.

View Article and Find Full Text PDF

Background: Cardiovascular diseases remain the world's primary cause of death. The identification and treatment of patients at risk of cardiovascular events thus are as important as ever. Adipose tissue is a classic risk factor for cardiovascular diseases, has been linked to systemic inflammation, and is suspected to contribute to vascular calcification.

View Article and Find Full Text PDF

Objectives: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Objective: To investigate the reproducibility of size measurements of focal bone marrow lesions (FL) in MRI in patients with monoclonal plasma cell disorders under variation of patient positioning and observer.

Methods: A data set from a prospective test-retest study was used, in which 37 patients with a total of 140 FL had undergone 2 MRI scans with identical parameters after patient repositioning. Two readers measured long and short axis diameter on the initial scan in weighted, weighted short tau inversion recovery and diffusion-weighted imaging sequences.

View Article and Find Full Text PDF

Objectives: Radiomics image data analysis offers promising approaches in research but has not been implemented in clinical practice yet, partly due to the instability of many parameters. The aim of this study is to evaluate the stability of radiomics analysis on phantom scans with photon-counting detector CT (PCCT).

Methods: Photon-counting CT scans of organic phantoms consisting of 4 apples, kiwis, limes, and onions each were performed at 10 mAs, 50 mAs, and 100 mAs with 120-kV tube current.

View Article and Find Full Text PDF

Coronary computed tomography angiography has become a mainstay in diagnosing coronary artery disease and is increasingly used in screening symptomatic patients. Recently, photon-counting computed tomography (PCCT) has been introduced into clinical practice, offering higher spatial and temporal resolution. As the applied radiation dose is highly dependent on the choice of scan mode and is lowest using the ultra-fast high-pitch (FLASH) mode, guidelines for their application are needed.

View Article and Find Full Text PDF

Perivascular adipose tissue is known to be metabolically active. Volume and density of periaortic adipose tissue are associated with aortic calcification as well as aortic diameter indicating a possible influence of periaortic adipose tissue on the development of aortic calcification. Due to better spatial resolution and signal-to-noise ratio, new CT technologies such as photon-counting computed tomography may allow the detection of texture alterations of periaortic adipose tissue depending on the existence of local aortic calcification possibly outlining a biomarker for the development of arteriosclerosis.

View Article and Find Full Text PDF

Feature stability and standardization remain challenges that impede the clinical implementation of radiomics. This study investigates the potential of spectral reconstructions from photon-counting computed tomography (PCCT) regarding organ-specific radiomics feature stability. Abdominal portal-venous phase PCCT scans of 10 patients in virtual monoenergetic (VM) (keV 40-120 in steps of 10), polyenergetic, virtual non-contrast (VNC), and iodine maps were acquired.

View Article and Find Full Text PDF

Objectives: Diffusion-weighted magnetic resonance imaging (MRI) is increasingly important in patients with multiple myeloma (MM). The objective of this study was to train and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient (ADC) maps in patients with MM, which automatically segments pelvic bones and subsequently extracts objective, representative ADC measurements from each bone.

Materials And Methods: In this retrospective multicentric study, 180 MRIs from 54 patients were annotated (semi)manually and used to train an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone.

View Article and Find Full Text PDF

Background And Purpose: Many patients with stroke cannot receive intravenous thrombolysis because the time of symptom onset is unknown. We tested whether a simple method of computed tomography (CT)-based quantification of water uptake in the ischemic tissue can identify patients with stroke onset within 4.5 hours.

View Article and Find Full Text PDF

Objectives: Despite the extensive number of publications in the field of radiomics, radiomics algorithms barely enter large-scale clinical application. Supposedly, the low external generalizability of radiomics models is one of the main reasons, which hinders the translation from research to clinical application. The objectives of this study were to investigate reproducibility of radiomics features (RFs) in vivo under variation of patient positioning, magnetic resonance imaging (MRI) sequence, and MRI scanners, and to identify a subgroup of RFs that shows acceptable reproducibility across all different acquisition scenarios.

View Article and Find Full Text PDF

Objectives: Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR).

Methods: A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom.

View Article and Find Full Text PDF

Background: Since its introduction, spectral computed tomography has become an integral part of clinical imaging with a variety of possible applications. Over time, technical innovations have considerably improved the spatial and energy resolution. The recent introduction of computed tomographs utilizing photon-counting x‑ray detectors has opened up further applications, which need to be investigated regarding their clinical utility.

View Article and Find Full Text PDF

The coronary artery calcium score is an independent risk factor of the development of adverse cardiac events. The severity of coronary artery calcification may influence the myocardial texture. Due to higher spatial resolution and signal-to-noise ratio, new CT technologies such as PCCT may improve the detection of texture alterations depending on the severity of coronary artery calcification.

View Article and Find Full Text PDF

X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm.

View Article and Find Full Text PDF

Objectives: Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report.

View Article and Find Full Text PDF

Purpose: Magnetic resonance imaging (MRI) of the lung can be used for diagnosis and monitoring of interstitial lung disease. Biophysical models of alveolar lung tissue are needed to understand the complex interplay of susceptibility, diffusion, and flow effects, and their influence on magnetic resonance (MR) spin dephasing.

Methods: In this work, we present a method for modeling the signal decay of lung tissue by utilizing a two-compartment model, which considers the different spin dephasing mechanisms in the alveolar vasculature and interstitial tissue.

View Article and Find Full Text PDF

The implementation of radiomics-based, quantitative imaging parameters is hampered by a lack of stability and standardization. Photon-counting computed tomography (PCCT), compared to energy-integrating computed tomography (EICT), does rely on a novel detector technology, promising better spatial resolution and contrast-to-noise ratio. However, its effect on radiomics feature properties is unknown.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: