Additive manufacturing (AM) of components using material extrusion (MEX) offers the potential for the integration of functions through the use of multi-material design, such as sensors, actuators, energy storage, and electrical connections. However, there is a significant gap in the availability of electrical composite properties, which is essential for informed design of electrical functional structures in the product development process. This study addresses this gap by systematically evaluating the resistivity (DC, direct current) of 14 commercially available filaments as unprocessed filament feedstock, extruded fibers, and fabricated MEX-structures.
View Article and Find Full Text PDFThe additive manufacturing of components using material extrusion (MEX) enables the integration of several materials into one component, including functional structures such as electrically conductive structures. This study investigated the influence of the selected additive MEX process on the resistivity of MEX structures. Specimens were produced from filaments and granules of an electrically conductive PLA and filled with carbon nanotubes and carbon black.
View Article and Find Full Text PDFAdditive manufacturing of components using the material extrusion (MEX) of thermoplastics enables the integration of multiple materials into a single part. This can include functional structures, such as electrically conductive ones. The resulting functional structure properties depend on the process parameters along the entire manufacturing chain.
View Article and Find Full Text PDF