Microgels provide a controlled microenvironment for enzymes, protecting them from degradation while enhancing stability and activity. Their customizable and biocompatible structure allows for targeted delivery and controlled release, making them ideal for transporting and preserving enzyme function in various applications. For such applications, detailed knowledge of the distribution of enzymes and their activity within the microgels is essential.
View Article and Find Full Text PDFHypothesis: The application of ferritin containers as a promising drug delivery vehicle is limited by their low bioavailability in blood circulation due to unfavorable environments, such as degradation by protease. The integration of ferritin containers into the polymeric network of microgels through electrostatic interactions is expected to be able to protect ferritin against degradation by protease. Furthermore, a stimuli-responsive microgel system can be designed by employing an acid-degradable crosslinker during the microgel synthesis.
View Article and Find Full Text PDFHyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H, supply and consecutive detection in a 1 T NMR spectrometer.
View Article and Find Full Text PDFStudies of water-based systems are of fundamental interest for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) as water is the most abundant and important medium for global living. Hence, increasing the polarization of water and dissolved compounds is particularly attractive for biomedical applications such as investigations of intermolecular interactions and metabolite structures as well as for imaging purposes. In this work, we show a new approach based on para enriched hydrogen (p-H ) that enables the hyperpolarization of bulk water if a suitable catalytic system is employed.
View Article and Find Full Text PDF