Drafting as a process to reduce drag and to benefit from the presence of other competitors is applied in various sports with several recent examples of competitive running in formations. In this study, the aerodynamics of a realistic model of a female runner is calculated by computational fluid dynamics (CFD) simulations at four running speeds of 15 km h, 18 km h, 21 km h, and 36 km h. Aerodynamic power fractions of the total energy expenditure are found to be in the range of 2.
View Article and Find Full Text PDFThe acoustic spectrum of our voice can be divided into harmonic and inharmonic sound components. While the harmonic components, generated by the oscillatory motion of the vocal folds, are well described by reduced-order speech models, the accurate computation of the inharmonic components requires high-order flow simulations, which predict the vortex shedding and turbulent structures present in the shear layers of the glottal jet. This study characterizes the dominant frequencies in the unsteady flow of the intra- and supraglottal region.
View Article and Find Full Text PDFVoiced speech consists mainly of the source signal that is frequency weighted by the acoustic filtering of the upper airways and vortex-induced sound through perturbation in the flow field. This study investigates the flow instabilities leading to vortex shedding and the importance of coherent structures in the supraglottal region downstream of the vocal folds for the far-field sound signal. Large eddy simulations of the compressible airflow through the glottal constriction are performed in realistic geometries obtained from three-dimensional magnetic resonance imaging data.
View Article and Find Full Text PDF